Vol. 6, №2, 2014
РусскийEnglish

LASER PHYSICS



TIME COMPRESSION OF X-RAY FREE-ELECTRON LASER PULSES UNDER CONDITIONS OF BRAGG DIFFRACTION
Vladimir A. Bushuev

Lomonosov Moscow State University, Faculty of Physics. http://www.phys.msu.ru
119991 Moscow, Russian Federation
vabushuev@yandex.ru

Received 01.12.2014
Abstract. In the last years several laboratories actively work on construction of X-ray free electron lasers (XFEL) with wavelength of radiation of the order λ ~ 0.1 nm. Theoretical calculations show, that self-induced amplification of spontaneous radiation on the exit of an XFEL undulator forms a pulse composed of many ultra-short peaks with duration from a fraction up to tens femtosecond. A further tailoring of the X-ray radiation parameters is necessary for most experimental application. A quite natural solution for this task is diffraction on ideal single crystals. A dynamical theory of diffraction of X-ray pulses with arbitrary form in the Bragg and the Laue cases was developed, which allows to consider special and temporal distribution of reflected and transmitted pulses at any given distance from a crystal with account of diffuse spreading of these pulses in the process of their propagation in space. It is shown, that super-short pulses with the duration about 0.1-1 fs are strongly widened in time and are deformed in form by the diffraction process. In the present paper I investigate the possibility of time compression of pulses, i.e. the reduction of their duration by means of the Bragg reflection. It is shown, that in the case of incident chirp pulses, for which the instantaneous frequency of radiation has a linear time dependence, and the phase – a quadratic one, it is possible to achieve for 1-10 fs incident pulse a reduction of duration by a factor of 10. The effect is based on a large spectral width of the chirp pulses, comparable or even exceeding the typical width of a Bragg reflection for the plane wave case.

Keywords: free-electron lasers; ultrashort X-ray pulses; X-ray optics; dynamical diffraction

PACS: 42.55.Vc

Bibliography – 37 references

RENSIT, 2014, 6(2):177-186 DOI: 10.17725/RENSITe.0006.201412a.0177
REFERENCES
  • Elton RC. X-ray lasers. Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, 1990, 285 p.
  • Saldin EL, Schneidmiller EA, Yurkov MV. The physics of free electron lasers. Berlin, Springer, 1999, 484 p.
  • Fetisov GV. Sinkhrotronnoe izlucheniye. Medody issledovaniya struktury veschestva [Synchrotron radiation. Methods of the material structure investigation]. Moscow, Fizmatlit Publ., 2007, 672 p.
  • Altarelli M. (eds.), XFEL. Technical Design Report. 2006, DESY 2006-097. Hamburg, Germany, http://xfel.desy.de/tdr/index_eng. html.
  • Arthur J. LCLS Conceptual Design Report. 2002, LCLS, USA, http://www-ssrl.slac.stanford. edu/lcls/cdr/
  • anaka T, Shintake T. SCSS X-FEL Conceptual Design Report, edited by Takashi Tanaka and Tsumoru Shintake. SCSS XFEL, R&D Group, RIKEN Harima Institute/SPring-8, Japan, 2005, http://www-xfel.spring8.or.jp/ SCSSCDR.pdf.
  • aldin EL, Scheidmiller EA, Yurkov MV. Nucl. Instr. Meth. A, 1999, 429(2):233-237.
  • Saldin EL, Schneidmiller EA, Yurkov MV. Report TESLA-FEL 2004-02, DESY, Hamburg, Germany, 2004, 39 p.
  • Saldin EL, Schneidmiller EA, Yurkov MV. New J. Phys., 2010, 12:035010(15).
  • Geloni G, Saldin E, Samoylova L, Schneidmiller E, Sinn H, Tschentscher Th, Yurkov M. New J. Phys., 2010, 12:035021(15).
  • Chukhovskii FN, Forster E. Acta Cryst. A, 1995, 51(5):668-672.
  • Shastri SD, Zambianchi P, Mills DM. J. Synchrotron Radiat., 2001, 8(7):1131-1135.
  • Shastri SD, Zambianchi P, Mills DM. Proc. SPIE, 2001, 4143:69-77.
  • Graeff W. J. Synchrotron Radiat., 2004, 11(3):261- 265.
  • Graeff W. J. Synchrotron Radiat., 2002, 9(1):82- 87.
  • Malgrange C, Graeff W. J. Synchrotron Radiat., 2003, 10(3):248-254.
  • Bushuev VA. Bull. Russ. Acad. Sci. Phys., 2005, 69(12):1903-1908.
  • Bushuev VA. J. Synchrotron Radiat., 2008, 15(5):495-505.
  • Vartanyants IA, Robinson IK. Optics Commun., 2003, 222(1-6):29-50.
  • Vartanyants IA, Robinson IK, McNulty I, David C, Wochner P, Tschentscher Th. J. Synchrotron Radiat., 2007, 14(6):453-470.
  • Bushuev V, Samoylova L. Nucl. Instr. Meth. A, 2011, 635(4):S19-S23.
  • Bushuev VA, Samoylova L. Bull. Russ. Acad. Sci. Phys., 2012, 76(2):153–158.
  • Akhmanov SA, D’yakov SA, Chirkin AS. Vvedeniye v statisticheskuyu raiofiziku i otpiku [Introduction to statistical radio-physics and optics]. Moscow, Nauka Publ., 1981, 640 p.
  • Bushuev VA, Samoylova L. Cryst. Rep., 2011, 56(5):819–827.
  • Bushuev VA. Bull. Russ. Acad. Sci. Phys., 2009, 73(1):52–56.
  • Bushuev VA. Bull. Russ. Acad. Sci. Phys., 2010, 74(1):41–45.
  • Saldin E, Schneidmiller E, Shvyd’ko Yu, Yurkov M. Nucl. Instrum. Methods. A, 2001, 475(2):357- 362.
  • Geloni G, Kocharyan V, Saldin E. Report DESY 10-053, Hamburg, Germany, 2010, 053:1-28.
  • Geloni G, Kocharyan V, Saldin E. Report DESY 11-224, Hamburg, Germany, 2011. 224:1-13.
  • Tschentscher Th. XFEL.EU TN-2011-001, 2011, 001:1-21.
  • Bushuev VA. Bull. Russ. Acad. Sci. Phys., 2013, 77(1):15-20.
  • Vartanyants IA, Singer A. New J. Physics, 2010, 12:035004(23).
  • Cerbino R. Phys. Rev A, 2007, 75(5):053815(4).
  • Bushuev V, Samoylova L, Proc. SPIE, 2011, 8141: 81410T(14); doi:10.1117/12.893054.
  • Bushuev VA. Bull. Russ. Acad. Sci. Phys., 2014, 78(12):1382-1387.
  • Vinogradova MB, Rudenko OV, Sukhorukov A.P. Teoriya voln [The theory of waves]. Moscow, Nauka Publ., 1990, 432 p.
  • Pinsker ZG. Dynamical scattering of X-rays in crystals. Springer Series in Solid-State Physics,


Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/140/6(2)-177-186e.pdf