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1. INTRODUCTION
The generation of  an X-ray free-electron laser 
(XFEL) is based on the phenomenon of  the self-
amplified spontaneous emission (SASE) of  high-
energy electron bunches at their transmission 
through a lengthy undulator system [1-3].

Three XFEL projects are now actively 
developed: the European XFEL Facility in 

Germany with radiation in hard X-ray range (λ 
~ 0.1-1.6 nm) [4], the X-ray lasers LCLS (Linac 
Coherent Light Source) in the USA [5] and the 
SCSS (Spring-8 Compact SASE Source) in Japan 
[6].

According to the calculations and 
experimental results reported in [2, 7-10], the 
parameters of  the European XFEL and its 
radiation in the SASE 1 channel are expected to 
be as follows: electron energy 17.5 GeV, total 
length of  superconducting undulators ~150 m, 
central radiation wavelength λ0= 0.1 nm, and 
the pulse full duration width at half  maximum 
(FWHM) τp ~ 100 fs. These pulses have a very 
irregular multispike temporal structure with a 
width of  individual random subpulses (spikes) 
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asymmetry coefficient in the Bragg and in the 
Laue cases is developed. Such an approach 
allows us to analyze the structure of  fields of  
forward-diffracted (transmitted) and diffracted 
(reflected) pulses at any distance from the 
crystal, and also the degree of  space and time 
coherence of  these pulses and their relation with 
the statistical properties of  the XFEL radiation 
field. The analysis of  pulse form and duration 
transformation in the process of  diffraction and 
propagation in vacuum is also conducted. It is 
shown, that only the symmetrical Bragg case can 
be used to avoid a smearing of  reflected pulses.

Time-resolved experiments, X-ray photon 
correlation spectroscopy, coherent diffraction, 
and phase-contrast imaging depend to a 
great extend on the coherent properties 
of  X-ray pulses [19, 20]. XFEL radiation is 
almost completely spatially coherent and is 
characterized by a fairly moderate temporal 
coherence. In the saturation mode, the 
length of  the spatial (transverse) coherence is 
comparable with transverse pulse size, whereas 
the coherence time (longitudinal coherence) τc 
≈ 0.2 fs << τp much less the total duration of  
XFEL pulse; as a result, the relative spectral 
pulse width ΔE/E≈ 0.1% [8, 10].

Diffraction reflection of  X rays from crystals 
and multilayer periodic structures is widely 
used to make radiation monochromatic and 
collimated. It was shown in [17, 18] that, in the 
case of  a diffraction reflection of  deterministic 
femtosecond pulses from single crystals, the 
reflected pulses broaden in time by 1-2 order of  
magnitude, their shape significantly differs from 
the time profile of  the incident pulse, and the 
peak intensity is several (or even several tenths) 
of  a percent of  the incident pulse intensity. In 
addition, in all cases except for the symmetric 
reflection in the Bragg geometry, the reflected 
pulse orientation changes rather nontrivially and 
the pulse begins to diffusely spread in space and 
time at distances of  0.1-1 m from the crystal [18]. 
The reason for this is that the spectral width of  

τs ~ 0.1-0.2 fs and time intervals of  ~ 0.3-0.4 fs 
between them, the transverse pulse size at the 
undulator output r0 ≈ 40 μm, and an angular 
divergence Δθ0 ≈ 1 μrad; peak power ≈ 10 GW, 
average power ≈ 40 W. The expected XFEL 
peak brightness should exceed that of  modern 
third-generation synchrotron radiation sources 
by nine orders of  magnitude [4].

X-ray diffraction phenomenon is widely 
used for monochromatization, collimation 
and polarization changes of  X-rays. In this 
connection, great interest is the consideration 
of  the diffraction reflection and transmission 
in perfect single crystals for controlling the 
characteristics of  the laser radiation in the hard 
X-ray wavelengths, and for the development of  
diagnostic methods of  XFEL pulse parameters.

The analysis of  diffraction of  XFEL radiation 
has been restricted so far to the approximation of  
a plane (unlimited) wavefront for the Bragg case 
“on reflection” [11-14] and for the Laue case “on 
transmission” [13, 15, 16]. The time structure of  
the incident pulse has been approximated either 
by a δ-function [11-13, 15, 16] or by a Gaussian 
[12, 14]. Although giving some insight into 
the physics of  short-pulse diffraction, such an 
approach cannot in principle take into account 
the presence of  transverse mode structure and, 
even more essential, a non-uniform distribution 
of  the field phase inside a pulse. However, such 
a phase distribution will inevitably arise at large, 
of  the order of  100-1000 m, distances from the 
undulator to the sample or monochromator 
crystal. Besides, all analysis [11-16] so far has 
been to the reflected pulse field on the exit 
surface of  a crystal, whereas significant practical 
interest is for spatial (transversal) and temporal 
(longitudinal) smearing of  pulses during their 
further propagation in vacuum from an output 
undulator window to the crystal-monochomator 
or to the crystal for investigations.

In the articles [17, 18] a general theory of  
dynamical diffraction of  X-ray pulses with an 
arbitrary spatial and temporal structure of  the 
field on crystals with arbitrary thickness and 
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these short incident pulses significantly exceeds 
the spectral range of  diffraction reflection.

In [21, 22] based on the formalism used 
in the statistical optics and radio-physics [23], 
the statistical theory of  the Bragg reflection 
of  random femtosecond XFEL pulses from 
multilayer periodic structures was developed. It 
is shown that the use of  quasi-forbidden second-
order reflections from a periodic multilayer 
structure Al2O3/B4C allows monochromatization 
of  femtosecond X-ray free-electron laser pulses 
at level ΔE/E ≈ 0.04% with an efficiency of  
~60%. The intensity, duration, and statistical 
characteristics of  the reflected pulses are studied.

In the paper [24] we report the results of  a 
theoretical analysis of  the spatial and temporal 
transformations of  the field of  X-ray pulse and 
its statistical properties under pulse propagation 
in free space and at a diffraction reflection in 
the Bragg and Laue geometries from one crystal 
or two crystal oriented parallel to each other. 
Particular attention is paid to the influence that 
the pulse path length has on the spatial, temporal, 
and statistical pulse characteristics, because the 
distances from the XFEL to the first optical 
elements and, even more, to the measuring 
stations are fairly large (400-900 m) [4-
8]. It has been shown that the diffraction 
reflection significantly increases the reflected 
pulse coherence time, while the shape of  the 
temporal-coherence function of  the reflected 
pulse differs significantly from the Gaussian 
incident pulse and has a characteristic triangular 
shape with damping oscillations at the edges. 
Earlier, it was investigated the influence of  the 
spatial coherence of  the X-ray beam, limited in 
space, but continuous in time, on the diffraction 
in crystals [25] and multilayer periodic structures 
[26].

As was mentioned above, the XFEL pulses 
are characterized by an almost complete spatial 
coherence and a very moderate temporal 
coherence, leading to a spectral width of  pulses 
of  ΔE/E ≈ 10-3. The authors [27-29] suggested 
various four-chip and single-chip circuits to reduce 

the spectrum width to ΔE/E ≈ 10-5, allowing us 
to attain a so called self-seeding mode and better 
laser generation with the crystal placed between 
two undulators. In the self-seeding regime X-ray 
pulse delayed as a result of  the passage of  the 
incident XFEL pulse on the crystal in the Bragg 
geometry is broadened in time and, therefore, 
has a narrow spectrum. It is this pulse is the 
seed of  coherent excitation of  electron bunches 
in the next undulator. The diffraction reflection 
of  femtosecond pulses from single crystals and 
multilayer periodic structures with the aim of  
their monochromatization and raising the degree 
of  temporal coherence was considered in [17, 18, 
21, 22, 24].

Pulse energies of  the European FEL in 
channels SASE1 and SASE2, depending on the 
bunch charge, are 20÷2500 μJ [30], leading to 
average energy flows of  60 W·cm-2 to 80 kW·cm-2 
in the region of  the first elements of  X-ray optics 
at distances of  500-900 m from the undulator. 
Allowance for and prevention of  the strong 
thermal heating of  the crystal and multilayered 
mirrors is one of  our most serious problems.

The need to analyze the heat load, in [31] we 
consider the effect of  such factors as the pulse 
energy; the temporal structure of  the XFEL 
radiation; the distance from the undulator; the 
initial and maximum temperatures of  the crystal; 
the temperature dependences of  the coefficients 
of  specific heat capacity; the heat conductivity; 
and the linear thermal expansion coefficient 
on the diffraction reflection and transmission. 
Spatiotemporal dependences of  the distribution 
of  the crystal temperature under the effect of  
pulses of  a free-electron X-ray laser are found 
using the solution of  a thermal conductivity 
equation. The effect of  temperature, its gradient, 
and the deformation of  the crystal lattice on 
the diffraction reflection and the transmission 
of  pulses in crystals of  synthetic diamond are 
considered.

It follows from the Van Cittert-Zernike 
theorem that the length of  spatial coherence 
(LSC) of  radiation ρc = λz/πr0 growths as distance 
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z increases and the source size r0 decreases, 
where λ is the wave length [23]. A number of  
the channels of  synchrotron radiation sources 
are therefore being updated to extend their 
length and reduce the transverse dimensions of  
electron bunches. For example, the channels of  
X-ray free-electron lasers and SPring-8 and APS 
synchrotron sources can be as long as 1 km [3].

As was noted above, an expression for the 
length of  spatial coherence ρc was obtained 
for a monochromatic source and a completely 
incoherent (δ-correlated in space) source typical 
of  heat radiation. For the synchrotron radiation 
of  a third-generation LSC, length ρ0 at the output 
window of  the undulator can be commensurate 
with source size r0 [32]; for X-ray free-electron 
lasers, ρ0 is often greater (and even much greater) 
than r0 [30, 32]. The Van Cittert-Zernike theorem 
was extended in [21, 22, 24, 25, 32-34] to sources 
with arbitrary lengths of  spatial coherence, with 
due account of  the parabolic bending of  the 
regular part of  the initial wave front [21, 22, 24, 
25, 34].

In the monograph [23] (p. 294), it was 
noted that as distance z ≥ zc from a spatially 
δ-correlated source grows, the partial temporal 
coherence of  its radiation field (i.e., its non-
monochromaticity) begins to affect the spatial 
coherence; an estimate was offered for the 
corresponding critical distance zc ≈ cτc(πr0/λ)2, 
where τc is the coherence time. This effect may 
be ignored at distances z << zc. In [21, 22, 24, 
34], it was shown that as the length of  the active 
channel of  a free-electron X-ray laser grows, 
the temporal coherence of  pulses, which was ab 
initio poor (τc ~ 0.2 fs; i.e., ΔE/E ~ 10-3 [30]), 
can lower an initially high degree of  spatial 
coherence. For the typical parameters of  a free-
electron X-ray laser (λ ~ 0.05-0.16 nm, r0 ~ 10-50 
μm, τc ~ 0.1-0.3 fs [30]), critical distance zc ≥ 1 km 
[21, 22, 24, 34].

In [35] conducted a generalization of  Van 
Cittert-Zernike theorem on sources with 
arbitrary spatial and temporal coherence. This 

work presents the results from a theoretical 
analysis of  variation in the spatial coherence 
function versus the distance, size, length of  
spatial coherence, and coherence time of  a 
radiation source. A more general expression for 
the critical distance is obtained; it is also shown 
that this distance shrinks, relative to the above 
simple estimate for zc, as the length of  spatial 
coherence of  the source radiation grows, what 
is characteristic for X-ray free-electron laser. We 
also show that the form of  the spatial coherence 
function is distinct from the original Gaussian 
form and depends on the choice of  a point in 
the cross section of  a beam or a pulse. 

As was noted above, X-ray diffraction in 
crystals is an effective method of  managing 
such characteristics of  the incident radiation as 
monochromaticity, angular divergence, duration 
and shape of  the reflected and transmitted pulses. 
In the present paper, based on the results obtained 
earlier in [17, 18, 21, 22, 24], the possibility of  
temporal pulse compression, i.e. reduce their 
duration as a result of  Bragg reflection from 
perfect single crystals is investigated.

It is shown, that in the case of  incident chirp 
pulses, for which the instantaneous frequency of  
radiation has a linear time dependence, and the 
phase – a quadratic one, it is possible to achieve 
for 1-10 fs incident pulse a reduction of  duration 
by a factor of  10. The effect is based on a large 
spectral width of  the chirp pulses, comparable 
or even exceeding the typical width of  a Bragg 
reflection for the plane wave case.

2. X-RAY PULSE PROPAGATION IN 
FREE SPACE
Before proceeding to the consideration of  
diffraction XFEL pulses in a single crystal, we 
first consider the transformation of  the pulse as 
it propagates in free space in the path from the 
output window of  the undulator to the crystal. 
At exit from undulator in the plane ρ = (x, y) at 
z = 0 the XFEL pulse radiation field is given by
E0(ρ,t) = A0(ρ,t)exp(-iω0t),        (1)
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where the amplitude A0(ρ, t) is a complex 
slowly varying function of  time (wave package), 
ω0 is an average (central) frequency. A slow 
variation of  amplitude implies, that |dA0/dt| 
<< ω0|A0|. If  τ0 is the characteristic time of  a 
pulse, Δω ≈ 1/τ0 is the spectral width of  a wave 
package and Δω/ω0 << 1 (it is the condition of  
quasi-monochromaticity).

Let us now find the field E(r, t) at any point 
of  space r = (ρ, z) and at any moment of  time 
t. Expanding the field (1) over a plane waves 
provides 

0 0( , ) ( , ) exp( ) ,E t E i i t d dω ω ω
∞ ∞

−∞ −∞

= −∫ ∫ρ q qρ q  (2)
where spectral amplitudes E0(q, ω) are defined as

3
0 0( , ) 1/ (2 ) ( , ) exp( ) .E E t i i t d dtω π ω

∞ ∞

−∞ −∞

= − +∫ ∫q ρ qρ ρ  (3)
Here q = (qx, qy) is a transversal vector. The 

field E(r, t) should satisfy to the wave equation 
in free space
ΔE – (1/c2)∂2E/∂t2 = 0
with a boundary condition E(ρ, z = 0, t) = E0(ρ, 
t). It is easily to show, that the required field has 
the following general integral form:

0( , ) ( , )exp( ) ,zE t E i ik z i t d dω ω ω
∞ ∞

−∞ −∞

= + −∫ ∫r q qr q  (4)
where kz(q, ω) = (k2 – q2)1/2, k = ω/c.

We shall obtain an expression for the field E(r, 
t) in so called the quasi-optical approximation 
[36], i.e. under the assumption, that the function 
E0(q, ω) (3) significantly differs from zero only 
at |q| << k. Such approximation is justified in 
the case, when the characteristic size a0 of  an 
initial pulse is much larger than the wavelength 
λ = 2π/k. In this case it is possible to expand kz 
in a series keeping terms up to the square terms 
over q:
kz ≈ k0 + Ω/c – q2/2k0,
where k0 = ω0/c = 2π/λ0, Ω = ω – ω0. Substituting 
(1), (3) and kz into (4), we shall obtain
E(r,t) = A(r,t)exp(k0z – iω0t).       (5)
Here A(r, t) is a slowly varying complex 
amplitude, which has the following form:

0( , ) ( , ) ( , / ) ,A t G z A t z c d
∞ ∞

−∞ −∞

′ ′ ′= − −∫ ∫r ρ ρ ρ ρ  (6)
with the Green function of  the free space (so 
called propagator)
G(ρ – ρ',z) = (1/iλ0z)exp[iπ(ρ – ρ')2/λ0z].      (7)

For numerical calculations, but also for a 
more detailed analysis of  the features of  XFEL 
pulse diffraction it is convenient to use the 
following equivalent spectral representation for 
slowly varying amplitude:

2
0 0( , ) ( , )exp[ / 2 ( / )] ,A t A i iq z k i t z c d d

∞ ∞

−∞ −∞

= Ω − − Ω − Ω∫ ∫r q qρ q  (8)

where A0(q, Ω) is the Fourier amplitude of  a 
source field A0(ρ, t) in the plane z = 0.

From equation (6) it is clear, that in vacuum, as 
in medium without dispersion, the perturbation 
reaches an observation point z after a time 
period z/c, and this delay does not depend on 
the wave spectral structure. In other words, the 
temporal structure of  a pulse does not vary 
during the propagation in free space, whereas 
the space distribution undergoes diffraction 
induced diffusion, connected with the limited 
cross section of  a pulse [17, 18, 24].

We shall investigate the modification of  
amplitude and phase of  a wave depending on the 
distance z for a practically important example of  
the Gaussian pulse with a quadratic variation of  
the initial phase:
A0(ρ,t) = exp[-(ρ/a0)

2 – (t/τ0)
2 + iφ0(ρ) + iψ0(t)],    (9)

where a0 is a characteristic width of  a pulse in 
a plane z = 0, τ0 is the duration of  a pulse; φ0(ρ) 
= βρ(ρ/a0)

2 and ψ0(t) = βτ(t/τ0)
2 are spatial and 

temporal phases, accordingly. Here βρ and βτ are 
dimensionless parameters, equal to the phase at 
ρ = a0 and t = τ0, accordingly. In the case of  a 
flat phase front the value βρ = 0. Substitution of  
(9) into (6) or (8) results in the following exact 
analytical expression for the complex amplitude 
in the observation plane z:
A(ρ,z,t) = |A|exp[iφz(ρ) + iψ0(t – z/c)],   (10)
where

2 2 2 2
0 0(1/ ) exp[ / ( / ) / ],A W r t z cρ τ= − − −
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W = [(1 + βρD)2 + D2]1/2,   r0 = a0W,

φz(ρ) = βz(ρ/r0)
2 – arctg[D/(1+βρD)],

2(1 ) .z Dρ ρβ β β= + +

Here D = z/Ld is dimensionless diffraction 
length (the so called wave parameter [36]), and 
Ld = πa0

2/λ0 is the distance, at which D = 1. 
If, for example, a0 = 30 μm and λ0 ≈ 0.1 nm, 
then Ld ≈ 30 m.

As it is clear from (10), during the propagation 
of  a pulse the wave front of  a wave is distorted. 
At distances D >> 1 the amplitude of  a wave 
decreases as |A| ~ Ld/z, and the cross-section 
of  a pulse grows according to the linear law r0(z) 
≈ a0(1+βρ

2)1/2z/Ld. The width of  angular (Δϑd d) 
and frequency spectrum (ΔΩ) do not depend on 
distance z and are determined by the values λ0, a0 
and τ0, but also by parameters of  an initial phase 
βρ and βτ:

2 1/2
0 0( / )(1 ) ,d a ρθ λ π β∆ = +  (11.1)

2 1/2
0(2 / )(1 ) .ττ β∆Ω = +  (11.2)

The consideration of  diffraction of  any X-ray 
pulse with a general form (5) or in the special 
case (10) represents a rather difficult problem. 
However, if  the cross-section size of  a pulse in 
the location of  the crystal r0 >> Λ, where Λ is 
the extinction length, and the width of  an angular 
spectrum Δϑd  << ΔϑB , where ΔϑB  is the width 
of  diffraction reflection curve, the problem is 
much simplified. For example, if  (as in the project 
European XFEL [30]), wavelength λ0 ≈ 0.15 nm, 
pulse size a0 ≈ 50 μm, βρ ≈ π/2 and the distance 
from the X-ray laser z ≈ 500 m (D = 9.8), then 
pulse size in the region of  the crystal r0 ≈ 0.1 mm 
and angular divergence Δϑd  ≈ 0.4", whereas for 
the reflection (220) from the single crystal Si one 
has extinction length Λ = 2.16 μm and the Bragg 
width ΔϑB  = 2.56". In this case it is possible to 
neglect the dependence of  amplitude and phase 
of  a pulse from the transverse coordinate x, to 
neglect the edge effects and to take into account 
only dependence of  the field on the time t.

3. TIME COMPRESSION OF X-RAY 
PULSES
In the previous papers [12-14, 17, 18] we saw, that 
in the case of  incidence of  a super-short X-ray 
pulse on a crystal the duration of  a reflected 
pulse is much increased. We shall now discuss 
an opportunity of  time compression of  X-ray 
pulse, i.e. the generation of  a reflected pulse 
with duration shorter than the incident pulse. We 
shall obtain also the ratio for parameters of  an 
incident pulse and the crystal, necessary for time 
compression.

Let us present the field of  incident plane 
quasi-monochromatic wave of  X-ray pulse in a 
form
Ein(t) = Ain(t)exp(-iω0t),
where Ain(t) is slowly varying complex amplitude. 
We shall consider for clarity a Gaussian pulse 
with quadratic modulation of  the phase φ(t):
Ain(t) = exp[-(t/τ0)

2 + iφ(t)],   (12)
where time-depended phase φ(t) = β(t/τ0)

2. Here 
τ0 is the duration of  a pulse, β is the constant, 
which is numerically equal to a phase of  a pulse 
field amplitude at times t = ±τ0. The quadratic 
dependence of  a phase on time means linear 
dependence of  an instantaneous frequency on time:

2
0 0( ) / .t tω ω β τ= −

Such a pulse, in which the instantaneous 
frequency varies in time, is called a chirp pulse, 
and β is the chirp parameter.

The wavelength of  a generated XFEL radiation 
is determined by the expression λ ≈ dun/2γ2, where 
dun is the space period of  the undulator, γ = E/mc2, 
E is the energy of  relativistic electron [1-3]. The 
chirp is generated by the loss of  electron energy 
in an undulator (≤10% [1-3]) as a result of  the 
induced deceleration and grouping in the bunches 
by transfer of  energy in a form of  X-ray quanta in 
a field of  bremsstrahlung radiation along the axis 
of  an electronic beam.

The frequency spectrum of  the incident 
pulse (12) has the form

1/2 1/2 2 2
0 0( ) [ / 2 (1 ) ]exp[ / 4(1 )].inA i iτ π β τ βΩ = − −Ω −  (13)
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Half-width of  this spectrum at the level e-1 is 
equal to
ΔΩin = (2/τ0)(1 + β2)1/2.   (14)

It is clear from expression (14), that at weak 
phase modulation (β << 1) the width of  a 
spectrum is determined by the pulse duration τ0: 
ΔΩin = 2/τ0. In the case of  strong modulation, 
when β >> 1, the width of  a spectrum is increased 
with increasing of  |β| irrespective of  a sign of  
parameter of  modulation β: ΔΩin ≈ 2|β|/τ0.

We shall consider now the Bragg reflection 
and transmission of  an X-ray pulse. The spectral 
distribution of  a reflected pulse AR(Ω) is 
determined by the product
AR(Ω) = Ain(Ω)R(Ω),   (15)
where R(Ω) is complex amplitude coefficient 
of  the Bragg reflection of  a plane wave in the 
space of  frequencies (for further details see in 
[17, 18]). The spectral width of  the function 
R(Ω) has the form [37]
ΔΩB = ω0ΔθBctgθB,    (16)
where ΔθB is the angular width of  the curve of  
diffraction reflection. In the case of  symmetric 
reflection from a thick crystal (d > Λ, where Λ is the 
extinction length [37]) the width ΔθB = λ/2πΛcosθB. 
In the case of  a thin crystal with thickness d << Λ 
(kinematical approximation) ΔθB = λ/2dcosθB.

In Fig. 1 the frequency spectrum of  an 
incident X-ray pulse is shown for various values 

of  chirp parameter β together with the reflection 
and transmission curves.

From (15) it is follows, that the spectral 
width of  the reflected pulse ΔΩR is determined 
approximately by the expression

2 2 1/2/ ( ) .R in B in B∆Ω ≈ ∆Ω ∆Ω ∆Ω + ∆Ω  (17)
The duration of  a reflected pulse τR ≈ 2/ΔΩR 

strongly depends on the ratio of  spectral width 
ΔΩin (14) and ΔΩB (16) We shall consider two 
limiting cases.

a) The case of  a long pulse, i.e. the pulse with 
a narrow spectrum: ΔΩin << ΔΩB. In this case 
from (17) it is follows, that ΔΩR ≈ ΔΩin and the 
duration of  a reflected pulse is equal to
τR ≈ τ0/(1 + β2)1/2.    (18)

Thus, in the case of  strong phase modulation 
(β >> 1) a significant time compression of  
reflected (Fig. 2) and transmitted (Fig. 3) pulses 
with τR << τ0 is possible.

b) The case of  a short incident pulse, i.e. the 
pulse with a wide spectrum: ΔΩin >> ΔΩB. In 
this case from (17) follows, that ΔΩR ≈ ΔΩB and 
the duration of  a reflected pulse is
τR ≈ τh ≡ 2/ΔΩB.    (19)

Fig. 1. Modulus of  frequency spectra |Ain(Ω)| (curves 1-3) of  
an incident X-ray pulse for different values of  chirp parameter β: 
0 (curve 1), 10 (curve 2), 30 (curve 3). Functions PR and PT are 
the intensity curves of  the Bragg reflected and transmitted waves in 
the case of  plane monochromatic incident wave, respectively. Pulse 
duration τ0 = 10 fs, crystal thickness d = 3 μm, symmetric Bragg 

reflection Si(220), wavelength λ = 0.154 nm.

Fig. 2. Intensity of  the incident pulse (curve 1) and intensity of  the 
reflected pulse (curves 2-4) versus time for different values of  chirp 
parameter β: 0 (curve 2), 10 (curve 3), 30 (curve 4). The units of  the 
abscissa are femtoseconds, whereas the ordinate is in arbitrary units. Time 
compression of  a diffracted pulse by a factor of  4.4 and its splitting can be 
clearly seen (curve 4). Other pulse and crystal parameters are as in Fig. 1.
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Clearly, the duration of  the reflected pulse 
is defined by the spectral width of  diffraction 
reflection curve alone. Thus, pulses with the 
duration τ0 << τh can not be compressed in 
principle (see Fig. 4).

In the case of  a thick crystal the duration τh 
= 2ΛsinθB/c. For instance, for the symmetrical 

reflection Si(220) and λ = 0.154 nm the value τh ≈ 
5.7 fs. The boundary value of  τh can be reduced 
by use of  a thin crystal with thickness d << Λ, for 
which τh = 2dsinθB/πc. If, for example, d = 0.1Λ, 
then τh = 0.2 fs. However in this case the intensity 
of  a reflected pulse sharply decreases together 
with the coefficient of  the Bragg reflection |R|2 
~ (d/Λ)2.

For super-short pulses with τ0 < τh the duration 
of  a reflected pulse is determined, actually, by the 
time of  propagation of  a wave with speed c in 
sub-surface layer with the thickness Λ in the case 
of  a thick crystal and in a crystal with thickness 
d in the case of  a thin crystal.

From Fig. 5 it is clear, that with the 
reduction of  a crystal thickness the reflected 
pulse duration also decreases. Full width at half-
maximum ΔtR = 1.18, 4.45, 2.03 and 1.21 fs for 
curves 1-4, accordingly. From these data it is 
clear, that the condition τ0 ~ τh is met only 
for a thin crystal with d = 0.2 μm (curve 4), 
therefore only in this case it is possible to 
carry out a time compression of  an incident 
chirp pulse (see Fig. 6).

Fig. 5. Intensity of  the incident pulse with the duration τ0 = 1 fs 
(curve 1, right ordinate scale) and the intensity of  the reflected pulse 
(curves 2-4) versus time at different thickness of  a crystal d: 3 μm 
(curve 2), 1 μm (curve 3), 0.2 μm (curve 4). The units of  the abscissa 
are femtoseconds, whereas the ordinate is in percents with respect to the 
incident pulse maximum. Symmetrical Bragg case, reflection Si(220), 

chirp parameter β = 0, wavelength λ = 0.154 nm. 

LASER PHYSICS

Fig. 3. Intensity of  the incident pulse (curve 1) and intensity of  
the transmitted pulse (curves 2-4) versus time for different values of  
chirp parameter β: 0 (curve 2), 10 (curve 3), 30 (curve 4). The 
transmitted pulse becomes higher and consists of  two narrow peaks. 

Other pulse and crystal parameters are as in Fig. 1. 

Fig. 4. Dependence of  degree of  time compression τR/τ0 on the 
chirp parameter β at different incident pulse duration τ0: 1 fs 
(curve 1), 10 fs (curve 2), and 100 fs (curve 3). Significant time 
compression is carried out only for incident X-ray pulses with the 
duration τ0 ~ 10 fs. Crystal thickness d = 3 μm, symmetric Bragg 

reflection Si(220), wavelength λ = 0.154 nm.
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With the increase of  chirp parameter β (see 
Fig. 6) the duration of  a reflected pulse decreases 
almost by a factor of  6 from ΔtR = 1.21 fs at β = 
0 (curve 2) up to ΔtR = 0.21 fs at β = 30 (curve 5).

From Fig. 7 it is clear, that the reduction of  
thickness of  a crystal also results in reduction 
of  reflected pulse duration for a super-short 
incident pulse with τ0 = 0.1 fs. However the 

effect of  time compression cannot be reached 
at any reasonable chirp parameters β, and in any 
practical case the duration of  a reflected pulse 
ΔtR exceeds τ0 even for a thin crystal.

4. CONCLUSIONS
In conclusion, this paper presents the results 
of  theoretical investigation of  the possibility 
of  time compression of  X-ray free-electron 
laser femtoseconds pulses, i.e. the reduction of  
their duration under conditions of  the Bragg 
diffraction on single crystals. It is considered the 
cases of  short and long pulses, and also the cases 
of  the Bragg reflections from thick and thin single 
crystals. It is shown, that in a case of  incident 
chirp pulses, for which the instantaneous phase 
of  radiation has quadratic time dependence, it is 
possible to achieve for 1-10 fs incident pulses a 
reduction of  duration of  the diffracted pulses by 
a factor of  10.
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