Vol. 6, №1, 2014


Potapov A.A.

Dr Sci.Phys&Math, Chief Research Fellow, Academician of Russian Academy of Natural Sciences
Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, http://www.cplire.ru
11/7, Mokhovaya str., 125009 Moscow, Russian Federation
potapov@cplire.ru; www.potapov-fractal.com

Received 23.04.2012

The aim of the work is to rescue from oblivion the results to create a rigorous and complete theory of fractional calculus, obtained in the second half of the 19th century, the outstanding Russian mathematician and a patriot of Russia Alexei Vasilyevich Letnikov, a talented organizer of mathematical education in Russia and the founder of the School of Mathematics at the Moscow Higher Technical School (now Moscow State Technical Bauman University). His highest mathematical scholarship (on the basis of Moscow University and the Paris Ecole Polytechnique and the Sorbonne), impeccable honesty and integrity earned respect and love for young scientists, many of which played a prominent role in the history of Russian science. Represented by the main code of Letnikov’s works: master’s dissertation, well-known debate on the pages of Mathematics Collection of the Moscow mathematical society (now the journal of Russian Academy of Sciences), as well as his doctoral dissertation, completed a rationale of the fractional calculus - heritage, rescued from under the waters of Lethe long and painstaking work of the author of these essays. It also present a modern view of the early 21st century on this calculus, which is the only and necessary mathematical apparatus is rapidly evolving in the last decades, fractal physics. Also includes biographical materials, which demonstrate the personal nobility A.V. Letnikov and its beneficial effects on the mathematical thought and the scientific community in Russia.

Keywords: integrodifferentiation of fractional order, fractional operators, fractional calculus, fractals, fractal physics

UDC 537.86:519.22

Bibliography - 67 references

RENSIT, 2012, 4(1):3-102
  • Oldham KB, Spanier J. The Fractional Calculus. N.Y., Academic Press, 1974, 234 р.
  • Samko SG, Kilbas AA, Marichev OI. Integraly i priozvodnye drobnogo poryadka i nekotorye ikh prilozheniya [Integrals and derivatives of fractional order and some of their applications]. Minsk. Nauka i tekhnika Publ., 1987, 688 с.; Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations. Amsterdam, Elsevier, 2006, 523 p.
  • Nigmatulin RR, Potapov AA. Drobnye operatory i ikh prilozheniya [Fractional operators and their applications] Nelineyny mir, 2009, 7(2):154-155; Baleany D, Kiryakova V. 3rd IFAC Workshop on Fractional Differentiation and Its Applications (FDA’08), 5-7 Nov. 2008. Fractional Calculus & Applied Analysis, 2009, 12(1):113-114.
  • McBride AC. Fractional Calculus and Integral Transforms of Generalized Functions. San Francisco, Pitman Press, 1979, 179 p.
  • Nishimoto K. Fractional Calculus. V. 1-5: Koriyama (Japan), Descartes Press Co., 1984, v.1, 195 p.; 1987, v. 2, 189 p.; 1989, v. 3, 202 p.; 1991v. 4, 158 p.; 1996, v. 5, 193 p.
  • Miller KS, Ross B. Introduction to the Fractional Calculus and Fractional Differential Equations. N. Y., Wiley, 1993, 384 p.
  • Kiryakova V. Generalized Fractional Calculus and Applications. N.Y., Wiley & Sons, 1994, 360 p.
  • Chukbar KV. Stokhastichesky perenos i drobnye proizvodnye [Stochastic transport and fractional derivatives]. JETF, 1995, 108(5):1875-1884 (in Russ.).
  • Rubin B. Fractional Integrals and Potentials. Harlow, Longman, 1996, 409 p.
  • Podlubny I. Fractional Differential Equations. N.Y., Academic Press, 1999, 368 p.
  • Hilfer R (ed.) Applications of Fraction Calculus in Physics. Singapore, World Scient. Publ. Co., 2000, 472 p.
  • Danilov YuA. Lektsii po nelineynoy dinamike [Lectures on nonlinear dynamics]. Moscow, Postmarket Publ., 2001, 184 p.
  • Potapov A.A. Fractaly v radifizike i radiolokatsii [Fractals in radiophysics and radar]. Moscow, Logos Publ., 2002, 664 p.
  • Klimontovich YuL. Vvedenie v fiziku otkrytykh sistem [Introduction to the physics of open systems]. Moscow, Yanus-K Publ., 2002, 284 p.
  • Potapov A.A. Fractaly v radiofizike i radiolokatsii: topologiya vyborki [Fractals in Radiophysics and Radiolocation: topology of sample]. Moscow, Universitetskaya kniga Publ., 2005, 848 p.
  • Potapov A.A. Fraktaly, lhaos, rekursiya [Fractals, chaos, recursion]. Vysshee obrazovanie segodnya, 2003, 4:18-26 (in Russ.).
  • Nakhushev AM. Elementy drobnogo ischisleniya i ikh primenenie [Elements of fractional calculus and their application]. Nal’chik, KBNTS RAN Publ., 2000, 299 p.; Nakhushev AM. Drobnoe ischisleniye i ego primenenie [Fractional calculus and their application]. Moscow, Fizmatlit Publ., 2003, 272 p.
  • Kobelev YaL, Kobelev LYa, Klimontovich YuL.Anomal’naya diffusiya s pamyat’yu, zavisyaschey ot vremeni i koordinat [Anomalous diffusion with memory, depending on time and coordinates]. DAN, 2003, 390(5):605-609 (in Russ.).
  • Pskhu AV. Uravneniya v chastnykh proizvodnykh drobnogo poryadka [Partial differential equations of fractional order]. Moscow, Nauka Publ., 2005, 199 p.
  • Nakhusheva VA. Differenzial’nye uravneniya matematicheskikh modeley nelokal’nykh processov [Differential equations of mathematical models of non-local processes]. Moscow, Nauka Publ., 2006, 173 p.
  • Potapov A.A. Fraktal’nye modeli i metody na osnove skeylinga v fundamental’nykh i prikladnykh problemakh sovremennoy fiziki [Fractal models and methods on the basis of scaling in fundamental and applied problems of modern physics]. Sb. nauchn. tr. «Neobratimye processy v prirode i tekhnike». Gorelik VS & Morozov AN (eds). Moscow, MGTU im.Baumana Publ., 2008, 2:5-107.
  • Uchaykin VV. Metod drobnykh proizvodnykh [The method of fractional derivatives]. Ul’yanovsk, Artishok Publ., 2008, 512 p.
  • Babenko YuI. Metod drobnogo differenzirovaniya v prikladnykh zadachakh teorii teplomassoobmena [The method of fractional differentiation in applications of the theory of heat and mass transfer]. St.Petersburg, NPO Professional Publ., 2009, 584 p.
  • Anastassiou GA. Fractional Differentiation Inequalities. N.Y., Springer, 2009, 686 p.
  • Potapov A.A. O fraktal’nykh radiosistemakh, drobnykh operatorakh, skeylinge i ne tol’ko... [On the fractal radio systems, fractional operators, scaling, and more...]. In: Fraktaly i drobnye operatory [Fractals and fractional operators]. With a foreword Acad. Gulyaev YuV and Corr.-Memb. RAS Nikitov SA. Kazan’, FEN AN RT Publ., 2010, pp. 417-472.
  • Potapov AA. The Textures, Fractal, Scaling Effects and Fractional Operators as a Basis of New Methods of Information Processing and Fractal Radio Systems De-signing. Proc. SPIE, 2009, 7374:73740E-1-73740E-14 (http://spie.org/x648.html?product_id=829032).
  • Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity: An Intro-duction to Mathematical Models. London, Imperial College Press, 2010, 368 p.
  • Letnikov AV. Teoriya differentsirovaniya s proizvol’nym ukasatelem [The theory of differentiation with an arbitrary index]. Matem. sb., 1868, 3:1-68 (in Russ.).
  • Letnikov AV. Ob istoricheskom razvitii teorii differentsirovaniya s proizvol’nym ukasatelem [On the historical development of the theory of differentiation with an arbitrary index]. Matem. sb., 1868, 3(2):85-112 (in Russ.).
  • Letnikov AV. K razyasneniyu glavnykh polozheniy teorii differentsirovaniya s proizvol’nym ukasatelem [To explain the main tenets of the theory of differentiation with an arbitrary index]. Matem. sb., 1873, 6(4):413-445 (in Russ.).
  • Letnikov AV. Issledovaniya, otnosyaschiesya k teorii integralov vida [Investigations concerning the theory of integrals of the form ]. Matem. sb., 1874, 7(1):5-205 (in Russ.).
  • Letnikov AV. Recherches relatives a la theorie des integrals de la forme . Bull. Sci. Math. Astron. J., 1874, 7:233-238.
  • Letnikov AV. Novye izyskaniya o trigonometricheskikh funktsiyakh [New research on trigonometric functions]. Matem. sb., 1882, 10:227-312 (in Russ.).
  • Letnikov AV. Ob opredelennykh integralakh, soderzhaschikh funktsii, udovletvoryayuschie gipergeometricheskomu uravneniyu [On definite integrals containing the functions that satisfy the hypergeometric equation]. Matem. sb., 1883, 11(3):327-414 (in Russ.).
  • Letnikov AV. O gipersfericheskikh funktsiyakh i o razlozhenii proizvol’noy funkstii v ryady, raspolozhennye po funktsiyam gipersfericheskim [About the hyperspherical functions and the decomposition of an arbitrary function in series, located on the hyperspherical functions.]. Matem. sb., 1885, 12(2):205-282 (in Russ.).
  • Letnikov AV. Ob integrirovanii uravneniya... [The integration of the equation...]. Matem. sb.,1888, 14(2): 205-215 (in Russ.).
  • Letnikov AV. O gipergeometricheskikh funktsiyakh vysshykh poryadkov [On hypergeometric functions of higher orders]. Matem. sb.,1888, 14(2):216-222 (in Russ.).
  • Letnikov AV. O privedenii mnogokratnykh integralov [The reduction of multiple integrals]. Matem. sb., 1888, 14(3):303-328 (in Russ.).
  • Sonin NYa. Soobschenie o differentsirovanii s proizvol’nym ukazatelem [The report on the differentiation of an arbitrary pointer]. Tr. 2-go s’ezda russkikh estestvoispytateley [Proc. of the 2nd Congress of Russian Naturalists]. 1870, 2:18-21 (in Russ.).
  • Sonin NYa. O differentsirovanii s proizvol’nym ukazatelem [Differentiation of an arbitrary pointer]. Matem. sb., 1872, 6(1):1-38 (in Russ.).
  • Sonine N. Recherches sur les Fonctions Cylindriques et le Development des Fonctions Continues en Series. Math.Ann., 1880, 16:1-80.
  • Sonin NYa. Obobschenie odnoy formuly Abelya [Generalization of one Abel’s formula]. Zap. matem. obsch. Novoross. obsch. estestvoispytateley. 1884, 5:143-150 (in Russ.).
  • Sonine N. Sur la Generalization d une Formule d Abel. Acta Math., 1884, 4:171-176.
  • Sonin NYa. Issledovaniya o tsilindricheskikh funktsiyakh i spetsial’nykh polinomakh [Studies on the cylindrical functions and special polynomials]. Moscow, GTTI Publ., 1954, 243 p.
  • Nekrasov PA. Obschee differentsirovanie [General differentiation]. Matem. sb., 1888, 14(1):45-168 (in Russ.).
  • Nekrasov PA. Prilozhenie obschego differentsirovaniya k integrirovaniyu uravneniy vida... [The application of the general differentiation to integration of equations of the form...]. Matem. sb., 1888, 14(1):344-393 (in Russ.).
  • Nekrasov PA. Prilozhenie obschego differentsirovaniya k zadache o privedenii mnogokratnykh integralov (v svyazi s integrirovaniem uravneniya Laplasa) [The application of general differentiation to the problem of reduction multiple integrals (in connection with the integration of Laplace’s equation)]. Matem.sb., 1888, 14(1):410-426 (in Russ.).
  • Nekrassov PA. Ьber Lineare Differentialgleichungen, Welche Mittelst Bestimmter Integrale Integrist Werden. Math. Ann., 1891, 38:509-560.
  • Ross B. A Brief History and Exposition of the Fundamental Theory of the Fractional Calculus. Lecture Notes in Mathematics. V. 457. N.Y., Springer Verlag, 1975, p. 1-36.
  • Potapov A.A. Kratkoe istoricheskoe esse o zarozhdenii i stanovlenii teorii drobnogo integrodifferetsirovaniya [A brief historical essay on the origin and development of the theory of fractional integrodifferentiation]. Nelineyny mir, 2003, 1(1-2):69-81 (in Russ.).
  • Machado JT, Kiryakova V, Mainardi F. Recent history of fractional calculus. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3):1140-1153 (doi:10.1016/j.cnsns.2010.05.027).
  • Caputo M. Linear models of dissipation whose Q is almost frequency independent. II. Geophys. J. R. Astr. Soc. 1967, 13:529-539.
  • Caputo M. Elasticita e Dissipacione. Bologna, Zanichelli, 1969.
  • Podlubny I. Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation. Fractional Calculus and Applied Analysis. 2002, 5(4):367-386.
  • Voroshilov AA, Kilbas AA. Zadacha Koshi dlya diffuzionno-volnovogo uravneniya s chastnymi proizvodnymi Kaputo [The Cauchy problem for the diffusion-wave equation with partial Caputo’s derivatives]. Differentsial’nye uravneniya, 2006, 42(5):595-609 (in Russ.).
  • Babenko YuI. Teplomassoobmen. Metod rascheta teplovykh i diffuzionnykh potokov [Heat-mass-exchange. The method of calculation of heat and diffusion flows]. Leningrad, Khimiya Publ., 1986, 144 p.
  • Nakhushev AM. Uravneniya matematicheskoy biologii [Equations of mathematical biology]. Moscow, Vysshaya shkola Publ., 1995, 301 с.
  • Kolwankar KM, Gangal AD. Fractional Differentiability of Nowhere Differentiable Functions and Dimensions. Chaos, 1996, 6(1):505-513.
  • Kolwankar KM, Gangal AD. Holder Exponents of Irregular Signals and Local Fractional Derivatives. Pramana-J. Physics (Indian Academy of Sciences), 1997, 48(1&2):49-68.
  • Kolwankar KM, Gangal AD. Local Fractional Fokker-Planck Equation. Phys. Rev. Lett., 1998, 80(2):214-217.
  • Potapov AA. Drobnye operatory i skeyling vo fraktal’noy elektrodinamike i shirokopolosnye fraktal’nye antenny v issledovanii vysokochastotnykh rezonansov i plazmonov [Fractional Operators and Scaling in Fractal Electrodynamics, and Wideband Fractal Antennas in the Researches of High Frequency Resonances and Plazmons.] Fizika volnovykh protsessov i radiotekhnicheskie skhemy, 2011, 14(3):54-77 (in Russ.).
  • Lasorenko OV, Potapov AA, Chernogor LF. Fraktal’nye sverkhshirokopolosnye signaly [Fractal ultrabroadband signals]. In: Information security: encryption methods. With a pref. by acad. Kuznetsov NA. Ed. Sukharev EM. Book 7. Мoscow, Radiotekhnika Publ., 2011, 151-187.
  • Rekhviashvili SSh, Potapov AA. Memristor i tselochislenny kvantovy effekt Kholla [Memristor and the Integral Quantum Hall Effect]. Radiotekhnika i elektronika, 2012, 57(2):189-191 (in Russ.).
  • Panasenko SV, Potapov AA, Chernogor LF. Rezul’taty primeneniya algoritmov teorii optimal’nogo obnaruzheniya i otsenivaniya dlya analiza solitona ogibayuschey [Results of Applying the Algorithms Based on the Theory of Optimal Detection and Optimal Estimation to Analysis of the Envelope Soliton]. Radiotekhnika i elektronika, 2012, 57(3):301-309 (in Russ.).
  • Potapov AA. Application of the Fractal Theory and Scaling Effects during Processing of Low-Contrast Images and Super Weak Signals in the Presence of Intensive Noise. Proc. Int. conf. “EI Zababakhin Scientific Talks”(16-20 April, 2012, Russia, Snezhinsk, Chelyabinsk region). Snezhinsk, RFNC-VNIITF, 2012:311-312 (http://www.vniitf.ru/zst).
  • Potapov АА. Fractaly, sleyling i drobnye operatory v obrabotke informatsii [Fractals, scaling and fractional operators in information processing] (Moscow scientific school of fractal methods in Kotel’nikov IREE RAS, 1981-2011). Works Сoll. “Irreversible processes in nature and technology”. Gorelik VS, Morozov AN (eds.). Мoscow, Bauman MSTU&Lebedev PI RAS, 2012, IV:5-121.
  • Potapov АА. Fraktal’ny metod i fraktal’naya paradigma v sovremennom estestvoznanii [Fractal method and fractal paradigm in modern natural science]. Voronezh, Nauchnaya kniga Publ., 2012, 109 p.

Full-text electronic version of this article - web site http://elibrary.ru