Vol. 6, №1, 2014
РусскийEnglish

NANOSYSTEMS



METHODS OF CREATION AND STUDY OF THE MONOMOLECULAR TRANSISTORS
Soldatov E.S., Sapkov I.V., Stepanov A.S.
Lomonosov Moscow State University, Faculty of Physics, http://www.phys.msu.ru
1/2, Leninskie Gory, 119991 Moscow, Russian Federation
esold@phys.msu.ru

Received 01.12.2011
The progress in the field of the element base of contemporary electronics gives a production of the microcircuit elements of to the sizes in the units of nanometers. It assumes a change in quite physical principles of the work of microelectronic devices in connection with the significance of quantum effects appearing on such sizes. The development of electronics led to the appearance of hybrid devices with the layer of molecular components on the base of silicon technology CMOS - complementary metal oxide semiconductor. Quantum point/nano-particle between the conducting electrodes, i.e. monomolecular single-electron transistor is a basic component (working element) here. The creation of transistor on the base of single molecule shares into two stages - creation of the conducting electrodes with the gap of the order of the units of nanometers and incorporation of molecule into this gap. In the present work the survey of the possible methods of the solution of this problem is proposed. Three groups of the methods of creating the electrodes for the molecular transistor are examined. In the first group are noted the methods with the possibility of the inspection of the width of gap: the laboratory methods of using the needle of the scanning tunnel microscope as one of the electrodes and the method of the controlled mechanical deformation of the base layer of the lithographically made nano-wire before breaking of electrodes with the formation of nano-gap. In the second group - methods of the local destruction of nano-wire due to either electromigration under the action of the current of high density, or the etching (electrochemical, by ion beam, ablation) of the nano-wires, created with electron-beam lithography or evaporation including shadow evaporation. The third group consist of the methods of reducing of the existing gaps to the nano-sizes by electrochemical precipitation, or by additional evaporation. Finally, the methods of the immobilization of single nano-objects into the nano-gap are discussed: from the uncontrollable simple precipitation of molecules from the solution with the subsequent desiccation to electrotrapping of single molecules and chemical self-assembly of nano-particles in the gap with the control of the voltage-current characteristic of contact.

Keywords: nano-electronics, monomolecular single-electron transistor, electrodes with the nano-gap, single nano-particles, lithography, electrochemistry.

UDC 621.382; 535.312

Bibliography – 140 references

RENSIT, 2011, 3(2)38-58.
REFERENCES
  • Moore GE. Electronics, 1965, 39(8):114-117.
  • Demkov AA, Navrotsky A, (eds.). Materials Fundamentals of Gate Dielectrics. Dordrecht, Springer, 2005.
  • International Technology Roadmap for Semiconductors (ITRS), 2010.
  • Tsu R. Nanotechnology, 2001, 12:625; Mantooth BA, Weiss PS. Proceedings of the IEEE, 2003, 91:1785.
  • Petty MC. Molecular electronics: from principles to practice. Chichester, Wiley-Interscience, 2007.
  • Aviram A, Ratner MA. Chem. Phys. Lett., 1974, 29:277-283.
  • Metzger RM. Acc. Chem. Res., 1999, 32:950.
  • James DK, Tour JM. Aldrichimica Acta, 2006, 39:47-56.
  • Likharev KK. In: Nano and Giga Challenges in Microelectronics. Greer J. (ed.). Amsterdam, Elsevier, 2003, 27-68.
  • Korkin A, Rosei F. (eds.). Nanoelectronics and Photonics. New York, Springer, 2008.
  • Stadler R, Forshaw M. Physica E: Low-dimensional Systems and Nanostructures , 2002, 13(2-4):930-933.
  • Book chapter “Challenges and breakthroughs in recent research on self-assembly”. Sci. Technol. Adv. Mater., 2007, 9:014109.
  • Ercken M. et al. Microelectronic Engineering, 2010, 87(5-8):993-996.
  • Osorio EA, Bjornholm T, Lehn JM, Ruben M, van der Zant HSJ. J. Phys.: Condens. Matter, 2008, 20:374121-374135.
  • Likharev KK. IBM J. Res. Develop., 1988, 32:144.
  • Kouwenhoven L. Science, 1997, 275(5308):1896-1897.
  • Chen F, He J, Nuckolls C, Roberts T, Klare JE, Lindsay S. Nano Lett., 2005, 5:503.
  • Neel N, Kroger J, Limot L, Frederiksen T, Brandbyge M, Berndt R. Phys.Rev. Lett., 2007, 98:065502.
  • Yasutake Y, Shi Z, Okazaki T, Shinohara H, Majima Y. Nano Lett., 2005, 5:1057.
  • Osorio E, O’Neill K, Wegewijs M, Stuhr-Hansen N, Paaske J, Bjornholm T, van der Zant HSJ. Nano Lett., 2007, 7:3336.
  • Lortscher E, Ciszek J, Tour J, Riel H. Small, 2006, 2:973.
  • Pan S et al. Adv. Mater., 2010, 22:1967.
  • Katsonis N, Kudernac T, Walko M, van der Molen SJ, van Wees BJ, Feringa BL. Adv., Mater., 2006, 18:1397.
  • Chen F, Li X, Hihath J, Huang Z, Tao N. J. Am. Chem. Soc., 2006, 128:15874.
  • Martin C, Ding D, Sorensen JK, Bjornholm T, van Ruitenbeek JM, van der Zant HSJ. J. Am. Chem. Soc, 2008, 130:13198.
  • Kamenetska M et al. Phys. Rev. Lett., 2009, 102:126803.
  • Schiessling J, Grigoriev A, Fasel R, Ahuja R, Bruhwiler PA. Chem. Phys.Lett., 2009, 478:191.
  • Lennartz MC, Atodiresei N, Muller-Meskamp L, Karthauser S, Waser R, Blugel S. Langmuir, 2009, 25:856.
  • Bellec A, Ample F, Riedel D, Dujardin G, Joachim C. Nano Lett., 2009, 9:144.
  • Brandbyge M, Mozos J-L, Ordejon P, Taylor J, Stokbro K. Phys. Rev. B, 2002, 65:165401.
  • Rocha AR, Garcia-Suarez VM, Bailey S, Lambert C, Ferrer J, Sanvito S. Phys. Rev. B, 2006, 73:085414.
  • Prodan E, Car R. Nano Lett., 2008, 8:1771.
  • Stadler R, Geskin V, Cornil J. Phys.Rev. B, 2008, 78:113402.
  • Toher C, Rungger I, Sanvito S. Phys. Rev. B, 2009, 79:205427.
  • Tkatchenko A, Romaner L, Hofmann OT, Zojer E, Ambrosch-Draxl C, Scheffler M. MRS Bull., 2010, 35:435.
  • Atodiresei N, Caciuc V, Lazic P, Blugel S. Phys. Rev. Lett., 2009, 102:136809.
  • Galperin M, Ratner MA, Nitzan A, Troisi A. Science, 2008, 319:1056.
  • Heimel G, Romaner L, Zojer E, Bredas J-L. Nano Lett., 2007, 7:932.
  • Awshalom DD, Flatte MM. Nature Phys., 2007, 3:153–159.
  • Bogani L, Wernsdorfer W. Nature Materials, 2008, 7:179-186.
  • Rocha AR et al. Nature Materials, 2005, 4:335-339.
  • Iancu V, Deshpande A, Hla S-W. Nano Lett., 2006, 6(4):820–823.
  • Zyazin AS, van den Berg JWG, Osorio EA et al. Nano Lett., 2010, 10(9):3307-3311.
  • Marquardt CW et al. Nature Nanotechnology, 2010, 5:863–867.
  • Seldenthuis JS, van der Zant HSJ, Ratner MA, Thijssen JM. Phys. Rev. B, 2010, 81:205430.
  • Pan C, Fang Y, Wu H et al. Adv. Mater., 2010, 22:1-5.
  • Selzer Y, Allara D. Annu. Rev. Phys. Chem., 2006, 57:593.
  • Tao NJ. Nature Nanotechnology, 2006, 1:173-181.
  • Lindsay SM, Ratner MA. Adv. Mater., 2007, 19:23.
  • Ulgut B, Abruna HD. Chem. Rev., 2008, 108:2721.
  • McCreery RL, Bergren AJ. Adv. Mater., 2009, 21:4303-4322.
  • Andergassen S et al. Nanotechnology, 2010, 21:272001.
  • Hofer WA, Fisher AJ, Lopinski GP, Wolkow RA. Chem. Phys. Lett., 2002, 365:129.
  • Lopinski GP, Moffat DJ, Wayner DDM, Zgierski MZ, Wolkow RA. J. Am. Chem. Soc., 1999, 121:4532.
  • Pitters JL, Dogel I, DiLabio GA, Wolkow RA. J. Phys. Chem. B, 2006, 110:2159.
  • Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC. Nature, 2002, 417:722.
  • Piva PG, DiLabio GA, Pitters JL, Zikovsky J, Rezeq MD, Dogel S, Hofer WA, Wolkow RA. Nature, 2005, 435:658.
  • Dickie AJ, Wolkow RA. Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 77:115305.
  • Nazin GV, Qiu XH, Ho W. Science, 2003, 302:77.
  • Patitsas SN, Lopinski GP, Hul’ko O, Moffatt DJ, Wolkow RA. Surf. Sci., 2000, 457:L425.
  • Moore AM, Dameron AA, Mantooth BA, Smith RK, Fuchs DJ, Ciszek JW, Maya F, Yao Y, Tour JM, Weiss OS. J. Am. Chem. Soc., 2006, 128:1959.
  • Bumm LA, Arnold JJ, Cygan MT, Dunbar TD, Burgin TP, Jones L, Allara DL, Tour JM, Weiss PS. Science, 1996, 271:1705.
  • Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW, Rawlett AM, Allara DL, Tour JM, Weiss PS. Science, 2001, 292:2303.
  • Scharf J, Strehblow H-H, Zeysing B, Terfort A. J. Solid State Electrochem., 2001, 5:396.
  • Laursen BW, Norgaard K, Reitzel N, Simonsen JB, Nielsen CB, Als-Nielsen J, Bjornholm T, Solling TI, Nielsen MM, Bunk O, Kjaer K, Tchebotareva N, Watson MD, MuЁllen K, Piris J. Langmuir, 2004, 20:4139.
  • Danilov AV, Kubatkin SE, Kafanov SG, Flensberg K, Bjornholm T. Nano Lett., 2006, 6:2184.
  • Danilov A, Kubatkin S, Kafanov S, Hedegard P, Stuhr-Hansen N, Moth-Poulsen K, Bjornholm T. Nano Lett., 2008, 8(1):1-5.
  • He J, Sankey O, Lee M, Tao N, Li X, Lindsay S. Faraday Discuss., 2006, 131:145-154.
  • Hines T et al. J. Am. Chem. Soc., 2010, 132(33):11658–11664.
  • Moreland J, Ekin JW. J. Appl. Phys., 1985, 58:3888.
  • Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Science, 1997, 278:252.
  • Muller CJ, Vleeming BJ, Reed MA, Lamba JJS, Hara R, Jones L, Tour JM. Nanotechnology, 1996, 7:409.
  • Kergueris C, Bourgoin JP, Palacin S, Esteve D, Urbina C, Magoga M, Joachim C. Phys. Rev. B, 1999, 59:12505.
  • Krans JM, Muller CJ, Yanson IK, Govaert TCM, Hesper R, van Ruitenbeek JM. Phys. Rev. B, 1993, 48:14721.
  • Van Ruitenbeek JM, Alvarez A, Pineyro I, Grahmann C, Joyez P, Devoret MH, Esteve D, Urbina C. Rev. Sci. Instrum., 1996, 67:108.
  • Van Ruitenbeek J, Scheer E, Weber HB. In: Lecture Notes in Physics: Introducing Molecular Electronics, Vol. 680 (Eds: Cuniberti G, Fagas G, Richter K), Heidelberg, Springer, 2005, pp. 253–274.
  • Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Von Lohneysen H. Phys. Rev. Lett., 2002, 88:176804.
  • Weber HB, Reichert J, Weigend F, Ochs R, Beckmann D, Mayor M, Ahlrichs R, von Lohneysen H. Chem. Phys., 2002, 281:113.
  • Reichert J, Weber HB, Mayor M, von Lohneysen H. Appl. Phys. Lett., 2003, 82:4137.
  • Djukic D, van Ruitenbeek JM. Nano Lett., 2006, 6:789.
  • Lortscher E, Ciszek JW, Tour J, Riel H. Small, 2006, 2:973.
  • Tian JH, Liu B, Li XL, Yang ZL, Ren B, Wu ST, Tao NJ, Tian ZQ. J. Am. Chem. Soc., 2006, 128(14):748.
  • Ho PS, Kwok T. Rep. Prog. Phys., 1989, 52:301.
  • Park H, Lim AKL, Alivisatos AP, Park J, McEuen PL. Appl. Phys. Lett., 1999, 75:301.
  • Strachan DR, Smith DE, Johnston DE, Park TH, Therien MJ, Bonnell DA, Johnson AT. Appl. Phys. Lett., 2005, 86:043109.
  • Mahapatro AK, Ying J, Ren T, Janes DB. Nano Lett., 2008, 8:2131.
  • Ghosh S, Halimun H, Mahapatro AK, Choi J, Lodha S, Janes D. Appl. Phys. Lett., 2005, 87:233509.
  • Lambert MF, Goffman MF, Bourgoin JP, Hesto P. Nanotechnology, 2003, 14:772.
  • Bolotin KI, Kuemmeth F, Pasupathy AN, Ralph DC. Nano Lett., 2006, 6:123.
  • Park H, Lim AKL, Alivisatos AP. Appl. Phys. Letters, 1999, 35(2):301.
  • Prins F, Hayashi T, de Vos van Steenwijk BJA, Gao B, Osorio EA, Muraki K, van der Zant HSJ. Appl. Phys. Lett., 2009, 94:123108.
  • De Los Santos Valladares L, Felix LL, Dominguez AB et al. Nanotechnology, 2010, 21:445304.
  • Dorn A, Huang H, Bawendi MG. Nano. Lett., 2008, 8(5):1347-1351.
  • Ward DR et al. J. Phys.: Condens. Matter, 2008, 20:374118.
  • Schull G, Frederiksen T, Arnau A, Sбnchez-Portal D, Berndt R. Nature Nanotechnology, 2011, 6:23–27.
  • Moth-Poulsen K, Bjшrnholm T. Nature Nanotechnology, 2009, 4:551-556.
  • McCreery RL, Bergren AJ. Adv. Mat., 2009, 21(43):4303-4322.
  • Strachan DR, Johnston DE, Guiton BS, Datta SS, Davies PK, Bonnell DA, Johnson ATC. Phys. Rev. Lett., 2008, 100:056805.
  • Mangin A, Anthore A, Della Rocca ML, Boulat E, Lafarge P. Phys. Rev. B, 2009, 80:235432.
  • Fischbein MD, Drndic M. Nano Lett., 2007, 7(5):1329-1337.
  • Nagase T, Kubota T, Mashiko S. Thin Solid Films, 2003, 438-439:374-377.
  • Blom T, Welch K, Strшmme M, Coronel E, Leifer K. Nanotechnology, 2007, 18:285301.
  • Morpurgo AF, Marcus CM, Robinson DB. Appl. Phys. Lett., 1999, 74:2084.
  • Kervennic YV, van der Zant HSJ, Morpurgo AF, Gurevich L, Kouwenhoven LP. Appl. Phys. Lett., 2002, 80:321.
  • Boussaad S, Tao NJ. Appl. Phys. Lett., 2002, 80:2398.
  • Xiang J, Liu B, Wu S-T, Ren B, Yang F-Z, Mao B-W, Chow YuL, Tian Zh-O. Angew. Chem. Int. Ed., 2005, 44:1265.
  • Sapkov IV, Soldatov ES, Elensky VG. SPIE Proceedings, Vol. 7025, Micro- and Nanoelectronics, 2007.
  • Bezryadin A, Dekker C, Schmid G. Appl. Phys. Lett., 1997, 71:1273.
  • Steinmann P, Weaver JMR, J. Vac. Sci. and Technol. B, 2004, 22:3178.
  • Klein DL, Roth R, Lim AKL, Alivisatos AP, P.L. McEuen PL. Nature, 1997, 389:699.
  • Persson SHM, Olofsson L, Gunnarson L. Appl. Phys. Lett., 1999, 74:2546.
  • Kubatkin SE, Danilov AV, Olin H, T. Claeson T. Phys. Rev. Lett., 2000, 84:5836.
  • Nagase T, Kubota T, Mashiko S. Thin Solid Films, 2003, 438-439:374.
  • Ho PS, Kwok T. Rep. Prog. Phys., 1989, 52:301.
  • Kervennic YV, Vanmaekelbergh D, Kouwenhoven LP, van der Zant HSJ. Appl. Phys. Lett., 2003, 83:3782.
  • McCarty GS. Nano Lett., 2004, 4:1391.
  • Negishi R, Hasegawa T, Terabe K, Aono M, Ebihara T, Tanaka H, Ogawa T. Appl. Phys. Lett., 2006, 88:223111.
  • Steinmann P, Weaver JMR. J. Vac. Sci. and Technol. B, 2004, 22:3178.
  • Fendler JH, Meldrum FC. Adv. Mater., 1995, 7:607.
  • Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Nature, 1997, 278:253.
  • Trouwborst ML, van der Molen SJ, van Wees BJ. J. Appl. Phys., 2006, 99:114316.
  • Strachan DR, Smith DE, Johnston DE, Park T-H, Therien MJ, Bonnell DA, Johnson AT. Appl. Phys. Lett., 86, 043109 (2005).
  • Yu LH, Natelson D. Nano Lett., 2004, 4:79 http://arxiv.org/abs/cond-mat/0310625.
  • Liang W, Shores MP, Bockrath M, Long JR, Park H. Nature, 2002, 417:728.
  • Xiang J, Liu B, Wu S-T, Ren B, Yang F-Z, Mao B-W, Chow YuL, Tian Zh-Q. Angew. Chem. Int. Ed., 2005, 44:1265.
  • Damaskin BB, Petriy OA, Tsirlina GA. Elektrokhimiya [Electrochemistry]. Moscow, Khimiya: KolosS Publ., 2006, p. 11.
  • Landau LD, Lifshits EM. Statisticheskaya fizika [Statistical physics]. P.1. Moscow, Nauka Publ., 1976, p. 292.
  • Damaskin BB, Petriy OA, Tsirlina GA. Elektrokhimiya [Electrochemistry]. Moscow, Khimiya: KolosS Publ., 2006, p. 361.
  • Koetz ER, Neff H, Mueller K. J. Electroanal. Chem., 1986, 215:331.
  • Fendler JH. Chem. Mater., 2001, 13(10):3196-3210.
  • Hiramutsu H, Osterloh F. Chem.Mater., 2004, 16:2509-2511.
  • Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, von Loehneysen H. Phys. Rev. Lett., 2002, 88(17):176804.
  • Zhou C, Muller CJ, Deshpande MR, Sleight JW, Reed MA. Appl. Phys. Lett., 1995, 67:1161.
  • Dulic D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD, Bowden TN, van Esch J, Feringa BL, van Wees BJ. Phys. Rev. Lett., 2003, 91:207402.
  • Subramanian KRV, Saifullah MSM, Tapley E, Kang D-J, Welland ME, Butler M. Nanotechnology, 2004, 15:158–62.
  • Liu K, Avouris Ph, Bucchignano J, Martel R, Sun S. Appl. Phys. Lett., 2002, 80:865–7.
  • Morpurgo AF, Marcus CM, Robinson DB. Appl. Phys. Lett., 1999, 74:2084.
  • Kervennic YV, van der Zant HSJ, Morpurgo AF, Gurevich L, Kouwenhoven LP. Appl. Phys. Lett., 2002, 80:321.
  • Fischbein MD, Drndicґ M. Nano Lett., 2007, 7(5):1329-1337.
  • Blom T, Welch K, Strшmme M, Coronel E, Leifer K. Nanotechnology, 2007, 18(28):285301.


Full-text electronic version of this article - web site http://elibrary.ru