Vol. 6, №1, 2014
РусскийEnglish

PHYSICS OF THE CONDENSED STATE



MODELING OF DIFFUSION AND PHASE FORMATION IN LAYERED BINARY METAL SYSTEMS
Rusakov V.S., Sukhorukov I.A.,
Lomonosov Moscow State University, Faculty of Physics, http://www.phys.msu.ru
1/2, Leninskie Gory, 119991 Moscow, Russian Federation,
rusakov@moss.phys.msu.ru
Kadyrzhanov K.K., Zhankadamova A.M.
National Nuclear Center, Repuplic of Kazakhstan, http://www.nnc.kz
6, Tauelsizdik str., 071100, Kurchatov, Repuplic of Kazakhstan
kadyrzhanov@inp.kz

Received 12.12.11
This paper provides an overview of works in which the methods of simulation of thermally induced processes of diffusion and phase formation in binary layered systems were developed and applied. The physical models of thermally induced processes of diffusion and phase formation in binary systems of layered metal-metal with two or three isotopes of two elements, and metal-metalloid were proposed in these works. The program realization of the proposed models (the program DIFFUSION) allowing to quantitatively describe the kinetics of thermally induced processes in layered binary systems with an arbitrary initial concentration profile of the components, taking into account the features of the phase diagrams of equilibrium states at any arbitrary time-temperature annealing regimes. The simulation of thermally induced processes of diffusion and phase formation in in the model bilayer systems metal-metal showed the character and degree of influence of the phase diagram of states, the diffusion coefficients and the thickness of the system on kinetics of the process of thermal stabilization of an inhomogeneous over the depth structural-phase state of the layered system and thermally stable concentration profile. The simulation of thermally induced processes of diffusion and phase formation in experimentally investigated layered binary systems metal-metal with two (Fe-Ti, Fe-Zr, Fe-Sn, Cu-Be) and three (57Fe-Ti-Fe(Ti)-57Fe) isotopes obtained by the method of magnetron sputtering and metal-metalloid (57Fe:O+), obtained by the method of ion implantation was carried out. The simulation results agree well with the experimentally obtained by the methods of MS- and CEMS-spectroscopy and X-ray diffraction sequence of phase transformations and the relative content of phases formed at all stages of the various time-temperature annealing regimes. At each stage for the first time the local concentrations of the components, the relative content of phases formed, the diffusion coefficients and diffusion fluxes of the components at any depth layered system, as well as the boundaries of single-phase regions were calculated. It is concluded that the character of phase formations in the experimentally and theoretically investigated lamellar systems is determined by changes of local concentration of components in the process of mutual diffusion and conforms to the features of the equilibrium phase diagrams of the binary system.

Keywords: diffusion, phase formation, layered binary metal system, simulation, Mossbauer spectroscopy, x-ray diffractometry.

UDC 539.216.2:543.429.3

Bibliography – 30 references

RENSIT, 2011, 3(2):19-37
REFERENCES
  • Ivanovsky GF, Petrov VI. Ionno-plazmennaya obrabotka materialov [Ion-plasma processing of materials]. Мoscow, Radio i svyaz' Publ., 1986, 232 p.
  • Popov VF, Gorin YuN. Protsessy i ustanovki elektroionnoy tekhnologii [Processes and instrumentsets of elektroion technologies]. Мoscow, Vysshaya shkola Publ., 1988, 255 p.
  • Komarov FF, Burenkov AF, Novikov AF. Ionnaya implantatsiya [Ion implantation]. Minsk, University Publ., 1994, 415 p.
  • Bely AV, Kukarenko VA, Lobodaeva OV, Taran II, Shikh SK. Ionno-luchevaya obrabotka metallov, splavov b keramicheskikh materialov [Ion-beam processing of metals, alloys and ceramic materials]. Мinsk, Nauka i technika Publ., 1997, 185 p.
  • Kadyrzhanov KK, Komarov FF, Pogrebnyak AD, Rusakov VC, Turkebaev TE. Ionno-luchevaya i ionno-plazmennaya modifikatsiya materialov [Ion-beam and ion-plasma modification of materials]. Мoscow, MGU Publ., 2005, 640 p.
  • Azarenkov NA, Bersenev BM, Pogrebnyak AD. Struktura i svoystva zaschitnykh pokrytiy i modifitsirovannykh sloev materialov [Structure and properties of coatings and modified material layers]. Khar'kov, KHNU Publ., 2007, 560 p.
  • Kadyrzhanov K.K., Rusakov V.S., Turkebaev T.E., Kerimov E.A., Lopuga A.D. Nucl. Instr. Meth. Phys. Res. B., 2001, 174:463-474.
  • Kadyrzhanov K.K., Rusakov V.S., Turkebaev T.E., Kerimov E.A., Plaksin D.A. Hyp. Int., 2002, 141-142(1-4): 453-457.
  • Kadyrzhanov KK, Kerimov EA, Plaksin DA, Rusakov VS, Turkebaev TE. Poverkhnost', 2003, 8: 74-78 (in Russ.).
  • Rusakov VS, Kadyrzhanov KK, Suslov EE, Plaksin DA, Turkebaev TE. Poverkhnost’, 2004, 12: 22-30 (in Russ.).
  • Rusakov VS, Kadyrzhanov KK, Korshiev BO, Turkebaev TE, Vereschak NF. Poverkhnost’, 2005, 1: 60-68 (in Russ.).
  • Sergeeva LS, Vereschak NF, Manakova IA, Antonyuk VI, Rusakov VS, Kadyrzhanov KK. Vestnik NYaC RK, 2006, 4:28-36 (in Russ.).
  • Argynov AB, Zhankadamova AM, Imanbekov ZhZh, Rusakov VS, Kadyrzhanov KK. Vestnik NYaC RK, 2007, 3:5-11 (in Russ.).
  • Rusakov VS, Kadyrzhanov KK, Turkebaev TE. Fizika metallov i metallovedenie, 2007, 104(4):387-395 (in Russ.).
  • Argynov AB, Zhubaev AK, Rusakov VS, Kadyrzhanov KK. Fizika metallov i metallovedenie, 2008, 105(2):182-190 (in Russ.).
  • Manakova IA, Vereschak MF, Sergeeva LS, Shokanov AK, Antonyuk VI, Rusakov VS, Kadyrzhanov KK. Fizika metallov i metallovedenie, 2010, 109(5):483-496 (in Russ.).
  • Rusakov VS, Kadyrzhanov KK, Turkebaev TE, Aimanov MSh, Zhukov VN. Poverkhnost'. Fizika, khimiya, mekhanika, 1995, 7-8:28-35 (in Russ.).
  • Kadyrzhanov K.K., Rusakov V.S., Turkebaev T.E. Nucl. Instr. Meth. Phys. Res. B., 2000, 170(1-2):85-97.
  • Rusakov VS, Sukhorukov IA, Zhankadamova AM, Kadyrzhanov KK. Fizika metallov i metallovedenie, 2010, 109(5):584-593 (in Russ.).
  • Rusakov VS, Sukhorukov IA, Zhankadamova AM, Kadyrzhanov KK. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya, 2011, 6:103–112 (in Russ.).
  • Rusakov VS, Sukhorukov IA, Zhankadamova AM, Kadyrzhanov KK. Vestnik Moskovskogo universiteta. Ser.3. Fizika. Astronomiya, 2011, 2:49–56 (in Russ.).
  • Rusakov VS, Sukhorukov IA, Zhankadamova AM, Kadyrzhanov KK. Vestnik Moskovskogo universiteta. Ser.3. Fizika. Astronomiya, 2011, 6:67-74 (in Russ.).
  • Sergeeva LS, Manakova IA, Vereschak MF, Sukhorukov IA, Zhankadamova AM, Yaskevich VI, Rusakov VS, Kadyrzhanov KK. Izvestiya NAN RK. Ser. fiz.-mat., 2010, 5:66-75 (in Russ.).
  • Manakova IA, Vereschak MF, Sergeeva LS, Sukhorukov IA, Zhankadamova AM, Rusakov VS, Kadyrzhanov KK. Vestnik NYaC RK, 2011, 2:103-108 (in Russ.).
  • Manakova IA, Vereschak MF, Sergeeva LS, Yaskevich VI, Antonyuk VI, Tuleushev YuZh, Zhankadamova AM, Sukhorukov IA, Rusakov VS, Kadyrzhanov KK. Vestnik NYaC RK, 2011, 4:110-116 (in Russ.).
  • Rusakov VS, Sukhorukov IA, Zhankadamova AM, Kadyrzhanov KK. Vestnik Moskovskogo universiteta. Ser.3. Fizika. Astronomiya, 2012, 3 (in Russ., in print).
  • Rusakov V.S., Kadyrzhanov K.K., Turkebaev T.E Izvestiya RAN, 2005, 69(10):1482-1487 (in Russ.).
  • Kadyrzhanov K.K., Rusakov V.S., Turkebaev T.E. J. Phys.: Condens. Matter., 2006, 18:4113-4126.
  • Rysakov VS, Sukhorukov IA. Svidetel'stvo o gos. reg. progr. DIFFUSION [Sertificate of state registration program DIFFUSION] №2012610880 от 20.01.12 (in Russ., in print).
  • Ziegler J., Ziegler M., Biersack J. Nucl. Instr. Meth. Phys. Res. B., 2010, 268:1818-1823.


Full-text electronic version of this article - web site http://elibrary.ru