Vol. 6, №1, 2014


Kuznetsova I. E, Zaitsev B. D., Borodina I. A.,
Kotel’nikov Institute of Radio Engineering and Electronics, Saratov Branch, Russian Academy of Science, http://www.soire.renet. ru
38, Zelenaya str., 410019 Saratov, Russian Federation
Kolesov V. V., Sknarya A. V., Petrova N. G.,
Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Science, http://www.cplire.ru
11/7, Mokhovaya str., 125009 Moscow, Russian Federation
Nosov A. V.,
Shirshov Institute of Oceanology, Russian Academy of Sciences, http://www.ocean.ru
36, Nakhimovsky pr., 117218 Moscow, Russian Federation

Received 25.11.2011
A piezoelectric plate supporting the propagation of antisymmetric zero-order (A0) Lamb wave is proposed to be used as a hydroacoustical waveguide emitter that transmits a bulk acoustic wave (BAW) into a liquid. The emitter’s directional pattern has been theoretically and experimentally examined for a frequency band of 89-107 kHz. An angular acoustic beam scanning was revealed to be realized by varying the A0 wave frequency. It is shown that, unlike complicated emitting systems of phased array type, this nonmechanical scanning could be realized in a simple device. The obtained results are in a good agreement with the theoretical ones.

Keywords: directional pattern, piezoelectric plate, hydroacoustical waveguide emitter, Lamb wave, angular acoustic beam scanning.

UDC 534.2

Bibliography – 17 references

RENSIT, 2011, 3(2):3-11
  • Hill CR (ed.). Physical principles of medical ultrasonics. Chichester: Ellis Horwood, 1986.
  • Rajendran V, Palanichami P and Raj B. Science and technology of Ultrasonics. New Delhi, Narosa Publishing House, 2003.
  • Joshi SG, Zaitsev BD. Low-profile transducer for flow meters. US Patent No. 6, 609, 430 B1, 2002.
  • Maltzev Yu, Prokopchik S. Underwater sound waveguide running wave transducers for shallow water acoustics. SWAC’97, 1997:615-620.
  • Joshi SG, Zaitsev BD, Kuznetsova IE. Miniature, high efficiency transducers for use in ultrasonic flow meters. Journ. of Applied Phys., 2009, 105(3):034501.
  • Joshi SG, Zaitsev BD, Kuznetsova IE. Efficient mode conversion transducers for use in ultrasonics flow meters. Proc. of IEEE Ultrasonics Symp, 2009:1491-1494.
  • Kuznetsova IE, Zaitsev BD, Joshi SG and Teplykh AA. Effect of a liquid on the characteristics of antisymmetric Lamb waves in thin piezoelectric plates. Acoustical Physics, 2007, 53(5):557–563.
  • Watkins RD, Cooper WHB, Gillespie AB, Pike RB. The attenuation of Lamb waves in the presence of a fluid. Ultrasonics, 1982, 20:257-264.
  • Zaitsev BD, Joshi SG, Kuznetsova IE, Borodina IA. Acoustic waves in piezoelectric plates bordered with viscous and conductive liquids. Ultrasonics, 2001, 39(1):45-50.
  • Oliner AA (ed.). Acoustic Surface Waves. In: Topics in Applied Physics. Vol. 24, Chap. 2. Berlin, Springer-Verlag, 1978.
  • Brekhovskikh LM. Waves in layered media. New York, Academic Press, 1980.
  • Campbell JJ, Jones WR. Propagation of surface waves at the boundary between a piezoelectric crystal and a fluid medium. Ieee trans. on ultrason., ferroel. and freq. contr., 1970, 17(2):71-76.
  • Joshi SG, Jin Y. Propagation of ultrasonic Lamb waves in piezoelectric plates. J. of Appl. Phys., 1991, 70(8):4113-4120.
  • SPI “ELPA”, catalog “Ferroelectric soft materials”: http://www.elpapiezo.ru/Catalogs/ Catalog_of_piezoceramic.pdf (access 25.11.2011).
  • Pachner J. On the dependence of directivity patterns on the distance from emmiter. J. Acoust. Soc. Amer., 1956, 28(1):86-90.
  • Morgan DP. Surface-wave devices for signal processing. Amsterdam, Elsevier, 1985.
  • Born M, Wolf E. Principles of optics. Ch.8. London, Pergamon, 1986.

Full-text electronic version of this article - web site http://elibrary.ru