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Abstract: The paper presents the analysis results of  formation theoretical descriptions of  an acoustic 
boundary layer near solid absolutely thermally conductive surface, obtained by G. Kirchhoff  and 
L.D. Landau. In both cases, the acoustic boundary layer is formed by inhomogeneous viscous 
and thermal waves in the wall layer of  a liquid medium in contact with the surface of  a solid body, 
from which a plane traveling sound wave is reflected. Based on the analysis, conclusions can be 
drawn: the analyzed problem solutions are physically sound, independent and complementary to 
each other. During the formation of  an acoustic boundary layer, viscous and thermal waves are 
excited synchronously in pairs. Inside the acoustic boundary layer, each pair of  inhomogeneous 
waves propagates towards each other. Inhomogeneous waves originate on parallel surfaces that 
limit the volume of  the acoustic boundary layer. The analysis of  the process of  transformation 
of  heat waves into additional one-dimensional inhomogeneous waves, the appearance of  which 
in the boundary layer was predicted by G. Kirchhoff. It is shown that when interacting with the 
surface of  the body of  a traveling sound wave in the sound frequency range, these waves do not 
affect the formation of  the boundary layer. The expressions allowing for a numerical estimation of  
the heat dissipation power density in the boundary layer are refined. A formula has been obtained 
that allows us to determine the proportion of  the energy of  the sound wave that is absorbed in the 
acoustic boundary layer. In practice, the results obtained in the article can be used, for example, in 
aeroacoustics to assess the dissipative properties of  solid surfaces.
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1. INTRODUCTION
Theory fundamentals of  acoustic boundary 
layer (ABL) were developed by G. Kirchhoff. 
In 1868, he published an article [1], in which 
he was the first to consider the problem on a 
sound wave interaction propagating in a gas 
with a flat infinite surface of  a solid absolutely 
heat-conducting body. It was shown that ABL 
is formed in a liquid medium layer located near 
the solid body surface. The ABL basis consists 
of  inhomogeneous viscous and thermal waves, 
which are excited by the sound wave interaction 
with the solid body surface.

The ABL theory was further developed in 
the B.P. Konstantinov work, which presents a 
method for calculating the acoustic field that is 
formed in a liquid medium as a reflection result 
of  a traveling sound wave from an infinite flat 
surface of  a solid absolutely heat-conducting 
body. Article [2] shows that as a result of  ABL 
excitation, the pressure reflection coefficient 
of  a sound wave becomes a complex quantity 
depending on the sound wave frequency, and 
a phase difference also appears between the 
incident and reflected sound waves. At any 
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incidence angle of  the sound wave, the wave 
energy dissipates due to the processes of  viscous 
and thermal waves attenuation in the ABL. B.P. 
Konstantinov also showed that outside the 
ABL, the physical processes occurring in it do 
not affect the interaction between the incident 
and reflected sound waves from the surface. In 
addition, the forming ABL does not affect the 
reflection law of  a sound wave from the solid 
bodysurface.

In the course of  the research presented in 
[1], G. Kirchhoff  points out possible application 
areas of  the theory he developed in acoustics. 
For example, he solved the problem of  the 
propagation and attenuation of  a traveling 
sound wave with a flat front in a cylindrical pipe 
with solid, absolutely heat-conducting walls. The 
formula for calculating the frequency dependence 
of  the spatial attenuation coefficient (SAC) of  a 
traveling sound wave, obtained in the course of  
solving this problem, is still used in aerodynamics. 
It was also shown that energy dissipation in the 
ABL near the walls of  narrow pipes is quite large 
and should affect the propagation speed of  the 
front of  the sound wave traveling in the pipe.

In December 1867, A. Kundt published work 
[3,4], in which he first experimentally established 
the fact of  slowing down the propagation speed 
of  the front of  a zero-order sound wave. A. 
Kundt conducted research on narrow glass pipes 
of  different diameters. As a research result, it 
was shown that the sound speed in the air in the 
pipe is less than the sound speed in free air space 
and becomes dependent on frequency. It was 
found that the sound speed is lower, the smaller 
the pipe radius and the lower the sound wave 
frequency.

The experimental data obtained by A. Kundt 
were used by G. Kirchhoff  to test the theory 
he developed. To do this, he considered the 
problem of  speed slowing down of  the front 
of  a plane sound wave traveling in a cylindrical 
pipe with solid, absolutely heat-conducting walls. 
As a this research result, G. Kirchhoff  obtained 
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an expression for calculating the frequency 
dependence of  the sound speed in cylindrical 
pipes with solid, absolutely heat-conducting 
walls.

A results comparison of  calculations of  the 
sound speed in the air filling the pipes, performed 
using the formula of  G. Kirchhoff, with the 
experimental data obtained by A. Kundt, allowed 
us to establish the following. G. Kirchhoff's 
formula correctly predicts the trend of  changes 
in the sound speed in a gas with changes in 
the sound wave frequency and the pipe radius. 
However, over the entire frequency range, the 
theoretical values of  the sound speed exceeded 
the measurement results. The reasons for the 
discrepancy between the results of  calculations 
and measurements in article [1] have not been 
established.

Finding out the reasons for such a discrepancy 
between the calculation results and experimental 
data requires additional research into the 
formation features of  ABL. To do this, it was 
decided to repeat A. Kundt’s experiment using 
modern acoustic equipment. When preparing for 
the experiment, the following circumstance was 
taken into account. In [5-7], it was shown that, 
according to the conditions for the formation 
of  an ABL and the dissipative properties of  the 
gas-solid interface, the substance of  which has 
finite values of  thermophysical parameters, the 
acoustic characteristics are close to the gas-solid 
interface of  an absolutely thermally conductive 
body. On this basis, for conducting experimental 
studies, you can use pipes whose walls are made 
of  any substance existing in nature.

To repeat A. Kundt's experiment, a 
cylindrical quarter-wave resonator was made, 
the walls of  which were made of  polyvinyl 
chloride. A setup description, experimental 
conditions and its results are presented in [8]. 
Analysis of  the measurement results allows us to 
draw the following conclusions. The frequency 
dependence presence of  the propagation speed 
of  the front of  a normal zero-order sound wave 

propagating in the air, filling the cylindrical 
pipe volume, is experimentally confirmed. G. 
Kirchhoff's formula for calculating the dispersion 
curve correctly predicts the dependence of  
the sound speed  on frequency. The difference 
between the theoretical and experimental values 
of  the sound speed in the pipe is large and 
increases as the wave frequency decreases.

In the frequency range studied, the 
experimental values of  the sound speed also 
turned out to be less than the theoretical values. 
If  we assume that the real energy dissipation 
in the APS of  pipe is approximately 2.5 times 
greater than the dissipative losses predicted by G. 
Kirchhoff ’s theory, then the theoretical dispersion 
curve shifts to the region of  experimental values 
of  the sound speed and practically coincides 
with the experimental dispersion curve.

The obtained result indicates that in the APS 
of  a solid surface, in addition to the dissipative 
process, the theoretical description of  which was 
made by G. Kirchhoff, there must be an additional 
dissipative process that compensates for the 
missing amount of  heat released in the APS of  
a solid absolutely heat-conducting surface. Such 
a process actually exists. Its description can be 
found, for example, in volume 6 of  the course 
by L.D. Landau [9], where the problem of  the 
ABL formation in viscous and heat-conducting 
liquid media in contact with the surface of  a 
solid absolutely heat-conducting body is solved 
from the hydrodynamics general perspective. It 
is shown that in the case under consideration, 
the ABL is also formed due to the excitation of  
inhomogeneous viscous and thermal waves in 
the near-wall layer of  liquid.

The motion equations of  viscous and 
thermal waves obtained in [9] differ from 
similar inhomogeneous waves equations 
used in the G. Kirchhoff  theory [1]. First 
of  all, inhomogeneous waves, described in 
[9], have a amplitudes distribution along the 
direction of  their propagation, which differs 
from similar distributions of  inhomogeneous 
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waves amplitudes, described in the article 
[1]. In addition, according to L.D. Landau, 
inhomogeneous waves in his solution are excited 
in a plane located at a distance of  the order of  
the boundary layer thickness from the solid body 
surface, and propagate along the normal to the 
body surface. Inhomogeneous waves, described 
by G. Kirchhoff, are excited on the solid body 
surface  and propagate along the normal in a 
liquid medium from the solid body surface.

Oscillatory velocities fields interacting with 
the surfaces of  solid absolutely heat-conducting 
bodies in the problems of  G. Kirchhoff  and 
L.D. Landau are potential physical fields. On 
this basis, it can be assumed that both tasks 
independently describe a single process of  ABL 
formation. Consequently, two viscous and two 
thermal waves simultaneously participate in 
the process of  ABL formation. Taking these 
circumstances into account, it is necessary to 
study the influence of  this set of  inhomogeneous 
waves on the physical processes occurring in the 
ABL.

2. INHOMOGENEOUS WAVES 
FORMING AN ACOUSTIC BOUNDARY 
LAYER
Let us consider a set of  inhomogeneous 
waves participating in the ABL formation near 
the surface of  a solid absolutely thermally 
conductive body. Articles [1,2] show that viscous 
and thermal waves are involved in the formation 
of  ABL, excited on the surface of  the physical 
contact of  the media and propagating deep into 
the liquid medium. At the same time, in the book 
[9] we find solutions to problems in the form 
of  viscous and thermal waves originating in a 
liquid medium and moving to the solid body 
surface. Both inhomogeneous waves pairs exist 
in a liquid medium independently of  each other 
and contribute to the ABL formation.

To assess the ABL physical properties that 
arises in the near-wall layer of  a liquid medium as 
a excitation result of  the entire inhomogeneous 
waves set in it, we consider the motion equations 

of  these waves. First, let us consider the 
interaction case of  a plane traveling sound wave 
with an infinite flat surface of  a solid absolutely 
heat-conducting body, studied by L.D. Landau. 
According to the problem solution presented in 
the book [9], as a result of  such interaction, an 
inhomogeneous viscous wave is excited in the 
near-wall layer of  the liquid medium:

( )
V11 0 11

1
1 exp ,

i x
u u η

 − −  = −  δ   
 (1)

where 2δ = ν ω  is the boundary layer thickness; 
v is the coefficient of  kinematic liquid viscosity; 

0 11 2 sinmu uη = θ– viscous wave amplitude; um is 
the amplitude of  the sound wave vibrational 
speed incident on a reflecting surface; θ is the 
angle of  wave incidence.

In equation (1) and below, the harmonic 
factor exp(iωt) is omitted for brevity. The viscous 
wave (1) is excited in the plane x = Δ, where Δ 
is the effective ABL thickness (see Fig. 1) and 
propagates in the negative direction of  the 0x 
axis to the solid body surface. The viscous wave 
amplitude u0η11 is equal to the vibrational velocity 
amplitude in the velocity field excited in the 
liquid outside the ABL.

In the book [9] we also find a problem 
solution for the case when a wave propagates 
in a heat-conducting medium. The result of  
the intsound wave eraction with the surface of  
a solid absolutely heat-conducting body is the 
inhomogeneous thermal wave excitation in the 

Fig. 1. An acoustic field formation over a flat surface of  a 
solid absolutely thermally conductive body.
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near-wall layer of  the liquid medium, the motion 
equation of  which has the form

( )
h11 m11

T

1
1 exp ,

i x
T T

 − −  ′ ′= −  δ   
 (2)

where T 2aδ = ω  is the thermal boundary 
layer thickness; α is the liquid medium thermal 
diffusivity coefficient; m11 m2T T′ ′=  – thermal wave 
amplitude; mT ′  – acoustic additive amplitude to 
the medium temperature in a traveling sound 
wave interacting with a reflecting surface.

Thermal wave (2) is excited in the plane x 
= ΔТ, where ΔТ is the thermal boundary layer 
effective thickness (see Fig. 1) and propagates 
along the 0x axis towards the reflecting surface 
(x = 0).

Note that in order to obtain the expression 
for the oscillatory velocity tangential component 
that necessary to derive formula (2), L.D. Landau 
used the distribution of  viscous wave amplitudes 
(1) along the direction of  its propagation.

As a result of  problem solving the sound 
wave interaction propagating in a viscous and 
heat-conducting medium with the surface of  
a solid absolutely heat-conducting body, G. 
Kirchhoff  established that inhomogeneous 
waves are excited on the body surface, the 
motion equations of  which have a form different 
from the motion equation of  waves (1) and (2). 
According to articles [1,2], the motion equation 
of  a viscous wave in this case has the form

( )
V12 0 12

1
exp ,

i x
u u η

− + 
=  δ 

 (3)

where 0 12 2 sinmu uη = θ  is the viscous wave 
amplitude.
In accordance with G. Kirchhoff's solution, a 
thermal wave is also excited on the surface of  
a solid absolutely heat-conducting body. The 
motion equation of  this inhomogeneous wave 
has the form

( )
h12 m12

T

1
exp ,

i x
T T

− + 
′ ′=  δ 

 (4)

where m12 mT T′ ′=  is the thermal wave amplitude.

Viscous (3) and thermal (4) waves originate on 
the surface of  a solid absolutely heat-conducting 
body in the x = 0 plane. The wave fronts move in 
the positive direction of  the 0x axis. The waves 
completely attenuate, respectively, at distances x 
= Δ and x = ΔТ from the surface x = 0 (see 
Fig. 1).

3. PROPERTIES OF 
INHOMOGENEOUS VISCOUS AND 
HEAT WAVES
The ABl physical characteristics are determined 
by the parameters of  inhomogeneous viscous and 
thermal waves that take part in its formation. To 
further establish cause-and-effect relationships 
between the physical processes occurring in 
the ABL, we will consider the viscous and 
thermal waves main characteristics. Expressions 
for calculating the parameters of  viscous and 
thermal waves, which are given below, are mainly 
taken from the book [9]. Formulas have been 
added to them that make it possible to calculate 
the parameters characterizing the decay over 
time of  oscillatory processes in viscous and 
thermal waves.

Let us dwell on the viscous waves parameters. 
If  we isolate the real parts from expressions (1) 
and (3), we obtain the equation for the viscous 
waves propagation in the form:

V12 0 cos ,
x xu u e t

−
δ

η
 = ω − δ 

 (5)

where 0u η  is the viscous wave amplitude;

V11 0 1 cos .
x xu u e t

−
δ

η

  = − ω +  δ  
 (6)

Viscous waves (5) and (6) belong to the 
one-dimensional inhomogeneous transverse 
waves class. The wave vectors of  these waves 
coincide with the normal direction to the solid 
body surface, near which they are excited. In 
viscous waves, liquid medium particles  oscillate 
in a plane perpendicular to the wave vector. The 
wave vectors of  waves (5) and (6) are directed 
towards each other.
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Viscous waves have the following physical 
parameters set:
– wave phase velocity 

V 2 ,c vωδ ω= =  (7)
– wavelength

V 2 ;λ = πδ  (8)
– complex wave number

( )V 1 ;k i δ= +  (9)
– wave number

1
V 1/ ,  m ;k δ −=  (10)

– spatial attenuation coefficient
1

V 1/ ,  m ;α δ −=  (11)
– time decay coefficient

1
V V ,  ;c cα ω −β = =V  (12)

– wave time constant

V V1/ 0 /159 ,Tτ = β =  (13)
where T is the oscillation period of  the sound 
wave.

Now let's consider the inhomogeneous 
thermal waves physical parameters. If  we isolate 
the real parts from expressions (2) and (4), we 
can write one-dimensional equations for the 
thermal waves propagation:

T
h12 m1

T

cos ,
x xT T e t

−
δ  

′ ′= ω − δ 
 (14)

where 1mT ′  is the thermal wave amplitude;

T
h11 m1

T

1 cos .
x xT T e t

−
δ

  
′ ′= − ω +  δ   

 (15)

Thermal waves (14) and (15) belong to the 
one-dimensional scalar waves class. The wave 
vectors of  these waves coincide with the normal 
direction to the solid body surface, in the ABL of  
which they are excited, and are directed towards 
each other.

The thermal wave properties can be 
characterized by the following parameters:
– phase speed

T T 2 ;c ωδ ωα= =  (16)
– wavelength

T T2 ;λ πδ=  (17)
– complex wave number

( )T T1 ;k i δ= +  (18)
– wave number

1
T T1/ ,  m ;k δ −=  (19)

– spatial attenuation coefficient
1

T T1 ,  m ;α δ −=  (20)
– time decay coefficient

1
T T Tc ,  ;c−β = α = ω  (21)

– wave time constant

T T1/ 0.159 ,Tτ = β =  (22)
where T is the oscillation period of  the sound 
wave.

If  we compare the writing options for the 
motion equations of  viscous waves (5) and (6) 
with the writing of  similar equations for thermal 
waves (14) and (15), then it is easy to notice 
that the forms of  writing these expressions 
completely coincide. This is due to the fact that 
these motion equations are solutions to one-
dimensional differential equations such as the 
heat equation. This is also due to the fact that 
the calculating formulas the physical parameters 
of  these waves have similar notation forms.

Here it is necessary to note the viscous and 
thermal waves amazing property. According to 
formulas (12) and (21), the viscous and thermal 
waves attenuation over time in any media does 
not depend on the physical parameters of  the 
these media substance and is determined only by 
the sound wave frequency ω, as a her interaction 
result with reflective solid surface by wich these 
viscous and thermal waves appeared.

The time constants of  all damped oscillatory 
processes in these inhomogeneous waves are 
determined by formulas (13) and (22). From 
these expressions it is clear that the time 
constants values also do not depend on the 
physical parameters of  the medium substance 
in which viscous and thermal waves are excited. 
The time constants τV and τT are small. This 
allows us to assume that viscous and thermal 
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waves are excited and disappear almost in real 
time, following changes in the external acoustic 
field amplitude. On this basis, we can assume 
that at the moment the field of  the acoustic 
additive to the medium temperature is turned 
on viscous waves (5) and (6), as well as thermal 
waves (14) and (15), are excited almost instantly 
and synchronously.

Viscous and thermal waves exist in a liquid 
due to the energy taken from the acoustic field. 
These waves are greatly attenuated as they 
propagate through matter. For example, if  the 
viscous wave front (5) travels a distance x = 
0.5λV, and the thermal wave front (14) travels 
a distance x = 0.5λT, then the these waves 
amplitudes will decrease by a factor of  exp(π) = 
23.1 and amount to 4.3% of  the original value.

Thus, at distances x > πδ viscous waves (5) 
and at distances x > πδT thermal waves (14) 
completely attenuate and no longer affect the 
acoustic field parameters outside the ABL and 
on the solid body surface. On this basis, the 
parameter Δ = πδ for viscous waves and the 
parameter ΔТ = πδТ for thermal waves were 
chosen as the thickness characteristic dimensions 
of  the viscous and thermal boundary layers, 
respectively.

To maintain continuous oscillatory processes 
in viscous and thermal waves, the external 
acoustic field oscillatory energy is continuously 
selected. This energy is irreversibly converted 
into heat by inhomogeneous waves, ensuring the 
process of  energy dissipation in the ABL. When 
an ABL is formed near a solid and absolutely 
heat-conducting surface, the viscous waves 
amplitudes (5) and (6), as well as the thermal 
waves amplitudes (14) and (15), are pairwise equal 
to each other. On this basis, it can be assumed 
that the heat release in the ABL of  a solid 
absolutely heat-conducting boundary should be 
approximately 2 times greater compared to the 
amount of  heat, the value of  which is obtained 
using separately the G. Kirchhoff  theory and the 
L.D. Landau solution.

Note that there are differences in the 
consequences of  viscous and thermal waves 
excitation in the ABL. If  viscous waves simply 
attenuate inside the ABL, then when thermal 
waves are excited, in addition to the process 
of  their attenuation, additional physical effects 
are observed. First of  all, we note that due to 
the thermal waves transformation in the ABL, 
inhomogeneous longitudinal waves additionally 
arise. The appearance possibility of  such waves 
in the ABL was predicted by G. Kirchhoff  in 
article [1]. The transformation waves physical 
properties have not yet been studied. For this 
reason, below is a study of  the conditions for 
their excitation and the main characteristics of  
these waves.

In addition, the thermal waves propagation 
in a substance is always accompanied by the 
emission of  secondary sound waves. In physics, 
this phenomenon is called the thermoacoustic 
effect. The thermoacoustic effect has been well 
studied. A modern theoretical description of  
the thermoacoustic effect can be found in the 
book [9]. This effect, for example, is used by 
electrothermal sound sources - thermophones. 
Acoustic parameters experimental studies of  
thermophones, which are presented, for example, 
in articles [10-13], confirm the thermoacoustic 
effect existence and show the building possibility 
broadband piston sound sources on this effect. 
Research in recent years has made it possible to 
establish that, under certain conditions, these 
sources can serve as acoustic signals receivers 
[14, 15].

4. ACOUSTIC FIELD OF A SOLID 
ABSOLUTE HEAT CONDUCTION 
SURFACE
The problem of  the acoustic field formation 
when a plane traveling sound wave is reflected 
from the infinite surface of  a solid absolutely 
heat-conducting body was solved by B.P. 
Konstantinov [2]. In the course of  problem 
solving B.P. Konstantinov, in addition to sound 
pressure p and vibrational velocity u, took into 
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account the acoustic additive presence to the 
medium temperature T' in the traveling sound 
wave.

The problem geometry is shown in Fig. 1. The 
upper half-space is filled with a viscous and heat-
conducting liquid medium. A sound wave falls 
at an arbitrary incidence angle θ onto an infinite 
smooth surface of  a solid absolutely thermally 
conductive body. The acoustic parameters 
values of  the wave are specified. The reflecting 
surface coincides with the plane x = 0. In the 
initial state, the upper and lower half-spaces 
are motionless relative to the one introduced 
in Fig. 1 coordinate system. The liquid medium 
and the solid are in thermodynamic equilibrium 
at a static temperature T0. The solid surface is 
impermeable to liquid.

The propagation of  a plane traveling 
harmonic sound wave in the form of  an acoustic 
additive to the medium temperature is described 
by the equation

( )m x yexp ,T T i k x k y ′ ′= −   (23)
where mT ′  is the acoustic additive amplitude 
to the medium temperature; x cos ;k k= θ  

y sink k= θ  – wave vector k projections onto the 
corresponding axes; /k c= ω  – wave number; c 
is the sound speed in a liquid medium; 2 fω = π  
– wave frequency.

According to G. Kirchhoff  [1], the amplitude 
of  the acoustic addition to the medium 
temperature in a traveling sound wave is 
calculated using the expression

( ) m
m

V

1
,uT

c
γ −

′ = ⋅
β

 (24)

where um is the oscillatory velocity amplitude, 
γ is the medium nonlinear parameter, βV is the 
coefficient of  medium thermal volumetric 
expansion.

Boundary conditions used by B.P. 
Konstantinov to solve the problem have the 
form:

0;xu =  (25)
0,   0;yu by x= =  (26)

11 0.T ′ =  (27)
In equations (25), (26) and (27), the following 

notations are introduced: ux – oscillatory velocity 
normal component; uy is the oscillatory velocity 
tangential component; 11T ′  – an acoustic additive 
to the temperature of  the liquid medium in the 
acoustic field formed in it.

Based on the solution to the problem 
presented in the B.P. Konstantinov work [2], let us 
consider the formation features of  the acoustic 
field that arises above the solid body reflecting 
surface (plane x = 0, Fig. 1) when a traveling 
sound wave interacts with it (23). As an example, 
let us consider the amplitude distribution of  the 
acoustic additive to the medium temperature 
in this field. In the general case, the acoustic 
additive field to the liquid medium temperature 
has the form

11 12 h12.T T T′ ′ ′= +  (28)
The scalar equation components (28) are:

– acoustic field in the volume of  liquid medium

( ) ( ){ }
12 2

m x y p x yexp exp

T T T

T i k x k y R i k x k y

′ ′ ′= + =

   ′= − + − −   
 (29)

where Rp is the complex reflection coefficient of  
a sound wave by pressure;
– thermal wave (4), the motion equation of  
which is written in the form

( )T
h12 m12 T ycos .k xT T e k x k y−′ ′= − −  (30)

If  expressions (28) and (30) are substituted 
into the boundary condition (27), then for the 
surface of  a solid absolutely heat-conducting 
body at x = 0 we obtain the equation

( )m p m121 0.T R T′ ′+ − =  

This equation takes into account the fact that 
the thermal wave excited on the body surface 
is included in antiphase with respect to the 
external acoustic field. Therefore, the thermal 
wave amplitude the (30) can be calculated using 
the formula

( )m12 m p1 .T T R′ ′= +  (31)
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Using the calculations results available in [2,5], 
it can be established that for gases in the sound 
frequency range and incidence angles θ from 0° to 
75º, the difference is 1 – |Rp| ≤ 0.05. Therefore, 
we can assume that |Rp| = 1. In this case 

m12 m2 ,T T′ ′= as was accepted in formulas (2) and (4).
In the ultrasonic frequency range, to calculate 

the thermal waves amplitude (2) and (4), it is 
necessary to use formula (31), in which to estimate 
the value of  |Rp| as a first approximation, we 
can use expressions for the complex sound 
wave reflection coefficients  obtained in [2,5].

If  in equation (29) we replace the variable 
temperature amplitude  mT ′  with the value 

sin ,mu θ  where mu  is the vibrational velocity 
amplitude in a sound wave incident on the 
surface, then we obtain the distribution of  
the tangential component of  the vibrational 
velocity vector u of  the acoustic field

( ){
( ) }

y m x y

p x y

sin exp

exp .

u u i k x k y

R i k x k y

 = θ − + 

 + − − 

 (32)

Expression (32) B.P. Konstantinov 
[2] used to determine the viscous wave 
amplitude (3) excited on the surface of  a solid 
absolutely thermally conductive body. As a 
calculation result, the formula was obtained

( )0 m p1 .u u Rη = +  (33)
As in the thermal wave case (4), expression 

(33) should be used to calculate the viscous 
waves amplitude (1) and (3) at high frequencies.

Note that equation (32) in its written 
form coincides with a similar distribution ,yu  
obtained in the case of  the classical calculation 
of  the sound wave reflection from a flat 
infinite solid body surface [16]. The difference 
between the cases under consideration is 
that in the classical case the value reflection 
coefficient Rp does not depend on frequency.

Scalar equation (28) was obtained by G. 
Kirchhoff  to describe the thermal processes 
occurring inside the ABL during the sound 
wave interaction with a solid absolutely 

heat-conducting surface. The thermal wave 
(30), propagating in the ABL, quickly decays 
and outside the ABL (at Tx ≥ ∆ ) does not 
affect the acoustic field parameters (29).

At incidence angles of  the sound wave 
θ > 0, a viscous wave (3) is excited on the 
reflecting surface, which also completely 
attenuates in the ABL. Outside the ABL (at 

Tx ≥ ∆ ), the viscous wave (3) also does not 
affect the acoustic field parameters (29).

5. ACOUSTIC BOUNDARY LAYER 
STRUCTURE
Let us consider the ABL structure that arises in 
the near-wall layer of  a liquid medium during 
the interaction of  a traveling sound wave with 
the solid absolutely thermally conductive body 
surface. The G. Kirchhoff  work [1] shows 
that the vibrational velocities distribution 
of  the sound field inside the ABL can be 
described by the following vector equation

1 V12 t12 ,= + +u u u u  (34)
where u is the vector of  the total oscillatory 
velocity in the ABL; u1 is the acoustic field vector 
resulting from the interaction of  direct and 
reflected sound waves; uV12 – vector of  viscous 
wave; ut12 is the vector of  an inhomogeneous 
wave appearing due to the transformation of  a 
thermal wave (30).

Equations (28) and (34) form a complete 
equations system the ABL of  a solid absolutely 
heat-conducting surface. This equations system, 
together with boundary conditions (25), (26) 
and (27), was used by B.P. Konstantinov for 
calculating the complex reflection coefficient 
from the  absolutely thermally conductive surface 
surface. The calculation results are presented in 
[2,5]. It should be noted here that when problem 
solving B.P. Konstantinov excluded from 
equation (34) the vector of  the inhomogeneous 
wave ut12, which appears in the ABL as a result 
of  the thermal wave transformation (30). The 
basis for excluding the inhomogeneous wave 
ut12 was the assumption that its contribution to 
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the dissipative processes occurring in the ABL 
is small.

Equations (28) and (34) were obtained by 
G. Kirchhoff  [1] without taking into account 
the excitation in the ABL of  additional viscous 
waves (1) and thermal waves (2), the appearance 
of  which in the ABL follows from the L.D. 
Landau solution [9]. Consequently, the equations 
system for the ABL of  a solid absolutely heat-
conducting surface must be written taking into 
account these inhomogeneous waves. As a result 
of  taking into account the presence of  a thermal 
wave in the ABL (2), equation (28) takes the form

12 h11 h12 ,T T T T′ ′ ′ ′= + +  (35)
where h11T ′  is the thermal wave (2).

The viscous wave (1) must be introduced 
into the vector equation (34), which, taking into 
account the thermal wave transformation h11T ′ , 
can finally be written as follows

1 V11 V12 t11 t12 ,= + + + +u u u u u u  (36)
where uV11 is the vector of  viscous wave (1); ut11 
is the vector of  an inhomogeneous wave excited 
in the ABL as a result of  the transformation of  
a thermal wave (2).

If  we do not take into account the existence 
of  inhomogeneous transformation waves ut11 
and ut12 in the ABL, then schematically the set of  
main inhomogeneous waves excited in the ABL 
of  a  solid absolutely thermally conductive body 
flat surface can be represented in the form of  a 
structural scheme (Fig. 2). The scheme shown in 

Fig. 2, reflects the fact that viscous and thermal 
waves in the ABL are generated in pairs and their 
wave vectors are directed towards each other.

In cases where the influence of  
inhomogeneous transformation waves ut11 
and ut12 cannot be neglected, the wave vectors 
of  these waves should also be included in the 
ABL structural scheme. However, this type 
of  inhomogeneous waves has not yet been 
adequately studied.

6. HEAT WAVE TRANSFORMATION 
INTO AN INHOMOGENEOUS WAVE 
OF VIBRATIONAL VELOCITY
As was shown by G. Kirchhoff  [1], the 
thermal waves excitation in the ABL should be 
accompanied by the appearance of  additional 
inhomogeneous waves. Inhomogeneous 
waves ut11 and ut12 arise in the ABL due to the 
transformation of  thermal waves h11T ′  and h12T ′ . 
Let us consider the physical properties of  these 
waves using the ut12 component as an example. 
According to G. Kirchhoff  [1], the vector ut12 
components can be found from the equation

( )t12 r1 grad ,a T ′= γ −u  (37)
where rT ′  is the reduced or dimensionless 
distribution of  the any thermal waves amplitudes. 
To go to the dimensional temperature amplitude 
in a thermal wave, it is necessary to use the 
formula ( )r h12 V 1 .T T′ ′= β γ −  After substituting 
this expression into formula (37), we have

t12 V hgrad ,a T ′= βu  (38)
where hT ′  is the motion equation of  any thermal 
wave excited in the ABL.

Let's calculate the components of  the vector 
ut12. In order to satisfy the boundary condition 
(26), B.P. Konstantinov [2] proposed in the 
motion equations of  viscous and thermal waves 
to take the dependence on the y coordinate in 
these waves in the form of  a factor exp(– ikyy), 
where ky = ksinθ. Then the motion equation of  
the thermal wave (4) takes the form

( )T
h12 m T y2 exp .k xT T e i k x k y−  ′ ′= − +   (39)

Fig. 2. ABL structural scheme without taking into account 
the transformation of  thermal waves: kh11 and kh12 – thermal 
waves wave vectors; kV11 and kV12 are viscous waves wave 

vectors.
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When carrying out calculations we will use 
the equation real part (39)

( )T
h12 m T y2 cos .k xT T e k x k y−′ ′= − −  (40)

In accordance with the interaction scheme 
of  a sound wave with a surface (see Fig. 1), 
the tangent component of  vector (38) can be 
determined from the expression

( )T

h12
t12y V

V y m T y2 sin .k x

Ta
y

a k T e k x k y−

′∂
= β =

∂

′= β − −

u
 (41)

After substituting the tangent component of  
the wave vector ky into formula (41) and simple 
transformations, we finally obtain

( )T
t12y t m T ysin sin .k xK f T e k x k y−′= θ − −u  (42)

where (4 ) / .tK v c= παβ

Let us carry out a numerical assessment of  
the dimensional coefficient Kt values included 
in formula (42). Under normal thermodynamic 
conditions, calculations give the following 
results. For gases, the Kt coefficient value is of  
the following order (10–10…10–9) m/K, and for 
liquids of  the order of  (10–13…10–11) m/K. The 
coefficient Kt values do not depend on frequency; 
therefore, in the entire practically important 
frequency range, the tangential component 
of  the oscillatory velocity vector (42) is very 
small and can be excluded from solving ABL 
problems. Physically, this means that vector (37) 
has only a normal component of  the vibrational 
velocity ut12x.

Analysis of  the thermal wave transformation 
process (2) gives results similar to the study 
results of  thermal wave transformation 
(4), presented above. On this basis, we can 
immediately write that as a result of  the 
transformation of  the thermal wave (9), a one-
dimensional inhomogeneous wave ut11 is excited 
in the ABL, the wave vector of  which is directed 
along the normal direction to the surface of  the 
body. Inhomogeneous waves ut11 and ut12 belong 
to the class of  longitudinal waves. In the future, 
when compiling the system of  ABL equations 

(35)-(36), we will take into account that their 
tangent components are ut11y = 0 and ut12y = 0.

To calculate the normal components 
parameters of  the thermal waves transformation 
vectors ut11 and ut12, we use the motion equation 
of  the thermal wave (15). Taking into account 
the fact that a one-dimensional thermal wave 
(15) is excited on the plane x = ΔT and moves in 
the negative direction of  the 0x axis, the motion 
equation of  the thermal wave (15) takes the form

( ) ( )T
h11 m T2 1 cos .xT T e k xα −π ′ ′= − − π   (43)

Next, using equation (38), we obtain formulas 
that allow us to calculate the parameters of  the 
transformation waves normal components:

( ) ( )T

h12
t12 V

t0 T Tsin cos ,

x

k x

Tu a
x

u e k x k x−

′∂
= β =

∂
= ⋅ − − −  

 (44)

( ) ( ) ( )T

h11
t11x V

t0 T Tsin cos ,k x

Tu a
x

u e k x k x−π

′∂
= β =

∂
= ⋅ − π − − π  

 (45)

where t0 V m2 .u a T ′= ω β  It is easy to show that the  
inhomogeneous waves (44) and (45) amplitudes 
have the velocity dimension. It is logical to 
move in these formulas from the amplitude of  
the acoustic additive to the temperature of  the 
medium mT ′ , to the amplitude of  the vibrational 
speed of  the traveling sound wave um. To do this, 
we use expression (24). After transforming the 
motion equations of  inhomogeneous waves (44) 
and (45), we obtain:

T
t12x tm Tsin ,

4
xu u e k x−α π = − ⋅ + 

 
 (46)

( )T
t11x tm T

5sin ,
4

xu u e k xα −π π = − ⋅ − 
 

 (47)

where tm 11 m2 2u b u=  is the amplitude of  the 
transformation wave; ( ) 2

11 1 2 .b a c= γ − ω
Due to the fact that all calculations in this 

work are carried out within the framework of  
G. Kirchhoff ’s theory [1], expressions (46) and 
(47) remain exact solutions in cases where the 
inequality b11 << 1 is satisfied. An frequencies 
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estimate at which this inequality is satisfied is 
allows us to establish that in the saund frequency 
range the inhomogeneous waves amplitudes (46) 
and (47) are small. As a consequence of  this, the 
transformation wave amplitude is utm << um. 
On this basis, when solving problems of  ABL 
formation in aerodynamics and hydroacoustics 
at low frequencies, inhomogeneous waves (46) 
and (47) and the physical effects associated with 
their appearance can be ignored.

It is easy to notice that inhomogeneous 
waves (46) and (47) are included in antiphase 
with respect to each other. This circumstance 
leads to the following ABL features, formed in 
a liquid medium, in contact with the surface of  
a solid absolutely thermally conductive body. 
Inhomogeneous waves excitation (46) and 
(47) does not lead to changes in the normal 
component amplitude of  the vibrational velocity 
vector u inside the ABL. The inhomogeneous 
waves presence (46) and (47) in the ABL also 
does not lead to a violation of  the boundary 
condition (3).

Inhomogeneous waves (46) and (47) are 
one-dimensional waves, the wave vectors of  
which are directed along the normal to the 
solid body surface. The oscillations direction 
of  liquid medium particles in these waves also 
coincides with the direction of  the normal and, 
therefore, waves (46) and (47) can be classified 
as inhomogeneous longitudinal waves. The 
appearance reason of  such waves is periodic 
thermal expansion of  the liquid medium in which 
an inhomogeneous thermal wave is excited.

Inside the ABL, inhomogeneous waves (46) 
and (47) interact with each other, forming a 
standing wave, the oscillations of  which occur 
in antiphase with respect to the sound wave (23) 
incident on the body surface.

In the ultrasonic frequency range, the  
inhomogeneous wave amplitude utm and the 
vibrational velocity amplitude of  the sound wave 
um can be comparable in magnitude. In this case, 
it is necessary to conduct an additional study of  

the transformation waves influence (46) and (47) 
on the ABL physical properties. In this case, the 
influence of  a solid surface impermeable to a 
liquid medium, limiting the ABL on one side, on 
the liquid oscillatory flows in the near-surface 
layer should be additionally studied.

7. ENERGY DISSIPATION IN THE 
ACOUSTIC BOUNDARY LAYER
Dissipative processes occurring in physical 
contact zone of  a liquid medium with the 
solid absolutely heat-conducting body surface 
are ensured by the attenuation of  viscous and 
thermal waves excited in the ABL. As shown 
above, as a result of  the isound wave nteraction 
(23) with the solid body surface, viscous waves 
(1) and (3), as well as thermal waves (2) and (4), 
are excited in its ABL.

To calculate the specific power of  heat release 
in the ABL provided by these inhomogeneous 
waves, we will use the technique described in 
the book [9]. According to this technique, the 
dissipative integral for any viscous waves takes 
the form

( ) 2
V

V 0
,

2
du x

q dx
dx

∆  η
= −  

 
∫  (49)

where η is the dynamic viscosity coefficient 
of  the liquid medium; Δ = πδ – ABL effective 
thickness; uV(x) is a viscous wave excited in the 
ABL.
We obtain the specific power of  heat release in 
the ABL, provided by any thermal waves, using 
the dissipative integral

( )T

2
h

T 0
0

,
dT x

q dx
T dx

∆ ′ χ
= −  

 
∫  (50)

where χ is the thermal conductivity coefficient 
of  the liquid medium; ΔT = πδT – effective 
thickness of  thermal ABL; ( )hT x′  – heat wave 
existing in the ABL; T0 is the static temperature 
of  the physical system in which the sound wave 
is excited.

If  we substitute equation (5) into integral 
(49), we obtain an expression for calculating the 
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specific power of  heat generation arising in the 
ABL due to the viscous wave damping (5). After 
simple calculations we have

2 2
m

V1
1.5 sin .uq η θ

= −
δ

 (51)

Similarly, for the viscous wave (6) we obtain
2 2
m

V2
1.5 sin .uq η θ

= −
δ

 (52)

A comparison of  formulas (51) and (52) 
shows that viscous waves (5) and (6) make the 
same contribution to the heat fluxes arising in 
the ABL.

Let us determine the contribution to the 
thermal balance of  the system from each of  
the thermal waves existing in the ABL. To do 
this, let’s substitute equation (14) into integral 
(50). After simple calculations, we obtain an 
expression for calculating the specific power of  
heat generation appearing in the ABL due to the 
thermal wave attenuation

2
m

T1
T

3.0 .Tq
T

′χ
= −

δ
 (53)

For thermal wave (15), similar calculations 
allow us to obtain

2
m

T2
T

3.0 .Tq
T

′χ
= −

δ
 (54)

If  we compare expressions (53) and (54), we 
can see that thermal waves also make the same 
contribution to the thermal balance of  the ABL.

The minus sign (51)-(54) indicates that all 
heat flows are directed in the negative direction 
of  the 0x axis (see Fig. 1) towards the surface 
of  the solid. Taking into account the properties 
of  a solid absolutely heat-conducting body, 
it can be argued that the static value of  the 
liquid medium temperature T0 always remains 
a constant value. Based on this, the influence 
of  temperature changes on the liquid medium 
physical parameters entering the ABL, provided 
that this problem is solved, can be neglected.

Let us return once again to expressions (51) 
and (52). Let us substitute the expression for the 

amplitude ABL into them 2 / .δ = ν ω  After 
transformation taking into account the averaging 
of  the function over time, these expressions take 
the form

V1 V2 V 0,q q D J= = −  (55)

where 2
0 m 2J cu= ρ  is the reserve of  the 

sound wave interacting with the body surface;
2

V 21 sin .D b= θ
If  we substitute the expression for the 

thermal boundary layer thickness T 2aδ = ω  
into formulas (53) and (54) and increase the 
acoustic addition to the medium temperature 
in the traveling sound wave (24), then after 
transformation these formulas will take the form

T1 T2 T 0 ,q q D J= = −  (56)

where 2
113.0 ;  ( 1) / .T T T p VD b k k C c= = γ − β

The total specific power of  heat release in 
the ABL is an integral part of  heat flows.

V1 V2 T1 T2q q q q q= + + +  (57)
or by specifying the images entered above, we 
get

( )V T 02 2 .q D D J= +  (58)
The coefficient characterizing the component 

of  the sound wave energy reflected from the 
surface of  a solid absolutely thermally conductive 
body can be found as follows. It is known that the 
average energy flux incident over time per unit 
wall surface in a sound wave is equal to J0cosθ. 
Consequently, the fraction of  energy observed 
when a sound wave exits the wall surface will be 
equal to

( )V T

0

2
.

cos cos
D DqM

J
+

= =
θ θ

 (59)

As we see from expression (59), the sound 
absorption by the solid body surface depends 
on the incidence angle of  the wave θ. With 
normal sound wave incidence on the solid body 
surface (θ = 0), viscous waves are not excited, 
and the coefficient M has a minimum value

min T2 .M D=  (60)
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As the incidence angle θ increases, the 
contribution of  viscous waves to energy 
dissipation in the ABL increases (see, for example, 
formula (51)), this leads to a corresponding 
increase in the coefficient value (59).

An assessment of  the energy amount 
absorbed in the ABL of  a solid absolutely heat-
conducting surface was previously carried out 
by B.P. Konstantinov and L.D. Landau (see 
works [2,9]). A comparison of  these calculations 
shows that in both cases the energy amount 
absorbed in the ABL is the same. If  we use the 
physical quantities notation adopted in article 
[2], then to calculate the fraction of  wave energy 
dissipated in the ABL, we can use the formula

( )2
11 21 sin cos .m b b= + θ θ  (61)

From a comparison of  expressions (59) 
and (61) it follows that the participation of  
viscous wave (1) in the formation of  an ABL 
leads to a 3-fold increase in energy dissipation 
in the ABL due to the liquid medium viscosity.

The absorption of  sound wave energy in 
the ABL, due to the liquid medium thermal 
conductivity, in our calculations exceeds 6.0 

Tk  times (see formula (58)). This is due to the 
fact that the value ΔT was chosen as the upper 
limit of  the dissipative integral (50), as well as 
the use of  the thermal waves amplitude (2) and 
(4) and formula (24) to estimate the magnitude.

Thus, the dissipative process efficiency in the 
ABL turns out to depend on the thermophysical 
parameters of  the liquid medium included in the 
coefficient Tk . For definiteness, we will assume 
that the acoustic field is excited in the gas. Under 
normal conditions the values Tk  are: air 0.94; 
argon 0.90; carbon dioxide 0.87. It is easy to 
notice that the gas coefficients values Tk  are 
close in value to 1. If  we substitute the obtained 
values Tk  into formula (56), we obtain that in air 
the energy dissipation in the ABL for thermal 
waves (2) and (4) is 2.82 times greater compared 
to the calculations results carried out in [2,9].

The expressions obtained above can be used 
for a preliminary assessment of  heat release in 

the ABL of  gas-solid interfaces, the substance 
of  which has finite values of  thermophysical 
parameters. However, these formulas cannot be 
used to calculate heat flows arising in the ABL 
boundaries of  a liquid-solid heat-conducting 
body. This is due to the fact that during the 
formation of  an ABL boundary between a liquid 
and a solid heat-conducting body, an additional 
thermal wave appears in the system. Due to the 
boundary conditions (see articles [5-7]), this 
thermal wave is excited at the interface between 
the media and propagates deep into the solid 
matter. The physical properties of  waves in a 
solid substance do not differ from the physical 
properties of  thermal waves existing in a liquid. 
As a consequence of  this, an additional heat 
flux qT2 appears on the right side of  equation 
(57). In this case, the heat flows are already qT1 
≠ qT2; qT1 > qT2. In addition, the thermal wave 
propagation in a solid is accompanied by the 
secondary sound waves generation and the 
excitation of  inhomogeneous transformation 
waves such as waves (46) and (47).

8. CONCLUSION
Solutions to problems that describe the 
excitation physical processes of  inhomogeneous 
viscous and thermal waves, obtained by 
G. Kirchhoff  [1] and L.D. Landau [9], are 
independent, complementary solutions. These 
solutions provide a description of  the excitation 
physical processes and propagation of  viscous 
and thermal waves occurring synchronously in 
the ABL of  a solid absolutely heat-conducting 
surface. Viscous and thermal waves are 
excited in the ABL simultaneously in pairs 
and decay synchronously as they propagate 
through the substance volume filling the ABL.

When a traveling sound wave interacts with 
an infinite flat surface of  a solid absolutely heat-
conducting body, an ABL arises in which both 
pairs of  inhomogeneous waves are excited on 
parallel surfaces that limit the ABL volume on 
both sides. Inside the ABL in each pair, viscous 
and thermal waves propagate towards each other.
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In the ABL volume, due to the thermal waves 
transformation, two additional inhomogeneous 
longitudinal waves (46) and (47) are excited. 
These waves are excited in the ABL due to 
periodic oscillations of  the liquid volume located 
inside the ABL, and are a consequence of  the 
thermal medium expansion in which a variable 
temperature field is excited. In the sound 
frequency range, the influence of  inhomogeneous 
waves (46) and (47) on the physical processes 
occurring in the ABL can be neglected.

In the future, it is advisable to consider the 
excitation process of  inhomogeneous waves of  
type (46) and (47) in the case of  the ABL formation 
during the interaction of  a standing sound wave 
with the solid body surface. Based on a preliminary 
analysis of  this process, it can be assumed that 
the excitation result of  inhomogeneous waves 
(46) and (47) is the acoustic flows emergence 
such as Schlichting vortices inside the ABL.

Inhomogeneous waves excited in the ABL 
exist due to the energy taken from the main 
sound wave interacting with the solid surface  
absolutely thermally conductive body. As a result 
of  combining the decisions of  G. Kirchhoff  and 
L.D. Landau, the total number of  inhomogeneous 
waves in the ABL increases, which leads to an 
increase in the heat release power in the ABL 
by approximately 2 times. The consequence 
of  heat release in the ABL is a decrease in the 
amplitude of  sound wave reflections. However, 
energy dissipation in the ABL does not affect the 
process of  acoustic interaction of  sound waves 
incident on the interface and reflected from it.

To calculate the parameters of  a sound wave 
reflected from the surface of  a solid absolutely 
heat-conducting body, you can use the calculation 
method developed by B.P. Konstantinov [2]. In 
the case under consideration, the received B.P. 
Konstantinov’s expressions for calculating the 
reflection coefficient of  a sound wave by pressure 
and its phase angle retain their form. To obtain 
the result in these formulas, it is enough to replace 
the calculation complex (61) with parameter (59).

The expressions obtained in this way can 
be used to estimate the dissipative properties 
of  solid surfaces in aeroacoustics. However, 
these expressions can be used to estimate the 
acoustic field parameters that arises under 
the influence of  sound waves propagating 
in liquids from the surface of  a solid heat-
conducting body. Approaching the ABL and 
studying its acoustic properties, it is necessary 
to separately consider the interface between 
a liquid and a solid - a substance that has 
finite values of  thermophysical parameters.
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