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Abstract: Heartbeat disorders are considered one of  the main maladies that cause mortality. 
Therefore, their precocious diagnosis via ECG signal is critical for introducing prompt therapy. 
The advanced automatic classification of  ECG signals has the potential to save cardiologists a 
tremendous amount of  time while simultaneously decreasing the chance of  misdiagnosis. The 
dilemma of  massive parameters is troubling the current methods of  ECG signal classification. Most 
recent methods exhibit inadequate performance for diagnosing ECG signals in the inter-patient 
mode. In an attempt to deal with the above limitations, this study offers an innovative, efficient, 
and end-to-end model. The suggested model uses the optimized transformer framework to classify 
the heartbeats according to the "Association for the Advancement of  Medical Instrumentation, 
AAMI," and obeys the inter-patient setting. We constructed an efficient architecture called the 
optimized network to substitute the Self  Attention Unit (SAU) in the encoder part of  the transformer 
model. The suggested model, which includes an optimized network, outperforms the SAU-based 
transformer model and requires fewer computations. A robust embedding architecture based on a 
Convolutional Neural Network (CNN) with a Squeeze and Excitation (SE) network-based attention 
scheme that has been used for weighting the Local Heartbeat Shape Pattern (LHSP) features is 
presented. The introduced model exceeds the state-of-the-art. An extensive test has been done to 
compare the achievements of  the suggested model with those of  the cardiologists. The results 
proved the closeness of  their performances.
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1. INTRODUCTION
An Electrocardiogram (ECG) is a popular tool for 
observing the electrical performance of  the heart 
and is crucial in detecting cardiovascular disorders 
[1,2]. A typical ECG signal is composed of  a series of  
beats that include a set of  sequence waves [3,4]. The 
medical data of  various sections of  the heart muscle 
can be extracted from these waves [5–8]. Fig.  1 
illustrates the standard pattern of  the ECG signal. 
The ECG signal needs to be observed and evaluated 
by an expert doctor to diagnose heart problems [9]. 
This aim is difficult to achieve because it requires 
numerous cardiologists and takes a long time, in 
addition to the possibility of  medical errors in the 
diagnosis, which may lead to death [10]. To tackle 
the above challenges, the researchers introduced 
many advanced automatic heartbeat classifiers. 
There are two main directions. The first is based on 
classical methods that use handcrafted features and 
necessitate manual involvement. Besides, a feature 
selection process is also required. However, they have 
limited self-learning and consume time [11–14]. The 
second depends on Deep Learning (DL) schemes 
that fuse feature extraction and classification in an 
end-to-end way [15]. The DL approaches comprise 
three models: the first is based on CNN [16,17], the 

second depends on RNN [18,19], and the third is a 
hybrid that combines CNN and RNN [20,21]. The 
DL-based techniques, on the other hand, also have 
certain limitations. For instance, many DL-based 
schemes necessitate a high number of  complicated 
convolution operations and recurrent architectures; 
this often yields a series of  hidden states, each of  
which relies on the preceding one. As a result, such 
architectures have a low level of  parallel computing. 
Currently, a transformer structure that includes a 
parallel SAU offers faster performance in the field 
of  translation techniques [22,23]. However, the 
ordinary transformer model has scalable space. In 
addition to considerable-scale variables for training, 
the SAU of  the transformer contours significant 
obstacles due to the context dimension, for instance, 
the quadratic term of  the input size [24]. Note that 
the complicated methods have heavy computations 
with many variables, consume high power, and 
require optimization before being implemented 
on portable, real-time ECG devices. Also, their 
performance needs to be improved when applied 
under the AAMI rules and in inter-patient conditions 
where the training and testing signals are separated. 
In an attempt to tackle the above problems, this 
paper suggests a new, end-to-end model based on an 
adapted and optimized transformer architecture for 
the ECG signal diagnosis task. The following are our 
essential contributions:
•	 We suggest a new, efficient, end-to-end model 

suitable for ECG devices with limited resources 
based on a modified and optimized transformer 
structure. Furthermore, we improve a more 
abridged and robust framework by employing 
a dual attention technique. The first is local 
attention for the ECG input embedding. The 
second is universal attention based on an 
optimized network for addressing complicated 
computations and the high number of  variables.

•	 The outcomes of  the introduced model, which 
complied with AAMI prescripts and inter-
patient settings, surpassed the other schemes in 
the literature.

•	 This research presented exclusive experiments 
that included comparing the performance 
resulting from the suggested model with its 
counterpart results from the decisions of  
cardiologists, where the results showed slight 
excellence of  the offered model.Fig. 1. The standard pattern of  the ECG signal.
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2. PROPOSED MODEL
After the normalization and R peak detection (based 
on the method in [25]) for the ECG signal of  the MIT-
BIH-ARR-DB (MIT-BIH Arrhythmia Database), 
the heartbeat segmentation is conducted. The length 
of  each beat is 280 samples. The suggested model 
depends on the transformer framework proposed 
in [22] for language processing applications. The 
presented model uses only the encoder portion 
of  the transformer framework, as illustrated in 
Fig.  2. Many modifications and developments to 
the encoder and input embedding portions have 
been made. On the input side, we introduce a novel 
attentional architecture based on CNN and the SE 
network [26] to strengthen the feature extraction 
power. To overcome the high number of  parameters 
dilemma, a more effective and robust layout for 

substituting the SAU of  the ordinary model [22] is 
presented. Furthermore, the offered model includes 
dual attention techniques, as shown in Fig. 2. Locally, 
level 1 of  attention uses the SE network, and 
universally level 2 of  attention utilizes the optimized 
network. Let the sequence Q = (q1, q2, …, qL), L is 
the heartbeat length, then the output of  the model 
M = (m1, m2, m3, m4), where mj is the probability of  Q 
arbitrated to class j.
2.1 Input Embedding

The primary step in the proposed framework 
is the embedding of  the input. An architecture 
based on CNNs and SE networks is suggested for 
strengthening the power of  capturing the LHSP 
features by CNNs and for weighting the LHSP 
features by the SE network, which represents level 1 
of  attention, as demonstrated in Fig. 3. Every 

Fig. 3. The suggested model structure of  the input embedding unit.

MEDICAL PHYSICS

Fig. 2. The block diagram of  the suggested model.
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heartbeat segment is reconfigured into a feature 
vector Q = (q1, q2, ..., qL), 1 ,F O× ×∈  where O is the 
No. channels, the dimension of  every channel is 
1×F. The reconfiguration process includes setting 
F = 10 and O = 28. The Q is forwarded to three 
architectures with level 1 attention successively, 
and then the output G is a vector with the LHSP 
feature connection in the beats of  the ECG signal. 
Moreover, the first two architectures comprise 
one convolution operation, Gconv, and one Global 
Maximum Pooling (GMP) operation, Gmax. The 
third architecture does not include the GMP as 
displayed in Fig. 3. The suggested model implements 
a sequence of  effective processes to increase its 
power to extract the LHSP features. The SE network 
is used to re-compute the convolution features and 
to weight the LHSP features. In other words, to 
focus on the significant LHSP features and eliminate 
worthless features such as noise, level 1 attention is 
used for weighting the LHSP features. This level of  
attention develops the suggested model's sensitivity 
to the LHSP information. The SE network consists 
of  a Global Average Pooling Layer (GAPL) and two 
Fully Connected Layers (FCLs), as shown in Fig. 4. 
After a sequence of  processes, the weight 1 OE ′+∈
of  every channel conformable to the feature V', 
specifies the weight E of  the feature V' based on the 
weighting process. These architectures and processes 
achieve the weighting of  the LHSP features, draw 
attention to the significant LHSP features, and boost 
the association between the LHSP features. The 

GAPL is applied to keep associations between the 
features and to produce the channel features.
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The size of  feature H is minimized, and then 
the size of  the features is maximized, where the 
FCLs configure the O'H for the channels to O'/CoF 
(CoF is the Compression Factor) to minimize the 
computations. The values of  CoF are specified as 4, 
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The ReLU is used to capture the non-linear 
interconnection between the LHSP features of  the 
heartbeat. The sigmoid function is used to capture 
the relevance between the LHSP features.
ReLU(H) = max(0,H),				       (3)
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The entire equation is given below:
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2.2 Positional Encoding

It is required to pass the positional data of  the 
ECG signal through an encoder and mount it with 
the provided embedding in the preceding step. The 
Sinusoidal Position Embedding (SPE) is used since 
it processes longer sequences with less time in the 
training stage. The SPE is described by the formulas 
given below [22]:

( ) ( )model 2 / , 2 sin /10000 ,n zPoEn PO n PO=  (6)

( ) ( )mod  2 / , 2 1 cos /10000 ,eln zPoEn PO n PO+ =  (7)

where n is the dimension, PO is the position, zmodel is 
the dimension of  output embedding.
2.3 Level 2 of Attention based on Optimized 
Network 
The application of  level 2 attention and the 
architecture of  the optimized network are discussed 
in this section. A new and optimized architecture 
is applied to substitute the SAU of  the original 
model presented in [22]. The optimized network 
mainly depends on the Optimized Convolution 
(OC). In the beginning, to understand the OC, the 
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Fig. 4. The detailed structure of  the SE network.
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Depth Wise Convolution (DWC) must be explained. 
The DWC implements the convolution over each 
channel individually. The number of  parameters can 
be minimized from z2w to zw, where w is the kernel 
width. The output t zT ×∈  (t: is the No. time steps) 
of  a DWC with weight w zω ×∈  for the pth element 
and o output size can be calculated using Eq. (8).
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The OC can be defined using Eq. (9).
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The z channels are segmented into Y sets, and then 
the parameters of  every z/Y channel are combined. 
Therefore, the No. parameters is minimized to  z/Y, 
for instance, the classical convolution necessitates 
1310720 (z2 × w) weights for z = 512 and w = 5, 
whereas the DWC has 2560 (z × w) weights, and 
with the weight sharing property, Y = 8, then we 
obtain only 40 (Y × w); the weights Y wω ×∈  are 
normalized using a softmax function.

The OC is a DWC that uses a softmax function 
to normalize its weights and shares specific output 
channels. Unlike SAU, the OC has a constant context 
window and uses weights that do not vary during 
time steps to evaluate the relevance of  context 
components. Fig. 5 illustrates the architecture of  
the SAU, while Fig. 6 demonstrates the structure of  

the optimized network. The input of  the optimized 
network is mapped from z to 2z. After that, the GLU, 
OC, and SE networks are applied, respectively. The 
Gated Linear Unit (GLU) utilizes 50% of  the inputs 
as gates using sigmoid modules and then determines 
the point-wise product with the remaining inputs. 
DropConnect is considered an efficient regularizer 
for the OC. Furthermore, DropConnect involves 
neglecting some of  the interim data inside the 
channel [24]. The optimized network is responsible 
for catching and weighting the Global Heartbeat 
(GH) features.

3. EXPERIMENTAL SETTINGS
The experiments for this research were carried out 
using MIT-BIH-ARR-DB [27], following the AAMI 
guidelines (as illustrated in Table 1) and the inter-
patient strategy. To meet the inter-patient method, the 
training-test signal datasets are divided into DS1and 
DS2, as explained in [28]. DS1 is increased using 
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Fig. 5. The architecture of  the SAU.

Fig. 6. The structure of  the optimized network.

Table 1
Relabeling MIT-BIH beats based on the AAMI 

guidelines
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SMOTE [29] to treat the dilemma of  imbalanced 
data.

In order to identify the optimal variables 
for the model, we employ the control variable 
approach. The search focuses on four crucial 
variables, namely: zmodel, Attention Layers, No. OC 
in Every Head, and zinner. While three variables 
remain constant, we investigate the impact of  the 
remaining variables on the outcomes. The optimal 
combination of  variables is shown in Table 2.

4. RESULTS AND DISCUSSION
A comparison between the introduced model 
and the competitor approaches in the literature is 
presented by determining the following metrics: 
F1-Score, Positive Predictive Value (PPV), 
Sensitivity (SEN), and Accuracy (ACC), as stated 
in Equations 10-13.

2. .1  ,PPV SENF Score
PPV SEN

− =
+

 (10)

,TPPPV
TP FP

=
+

 (11)

,TPSEN
TP FN

=
+

 (12)

,TP TNACC
TN FN TP FP

+
=

+ + +
 (13)

where FN: False Negative, FP: False Positive, TP: 
True Positive.

The outcomes of  the suggested framework 
and those of  the state-of-the-art in recent 
literature are shown in Table 3. Overall, current 
techniques offer reasonable achievement in 
V-class identification. But, their accomplishments 
were noticeably reduced in S-class recognition; 
this is essentially a result of  the distinguishable 
LHSP features for the V-category. The S class 
usually has LHSP, which is like the N class, 
making distinguishing between them difficult. 
The findings show our model surpasses the state-
of-the-art, especially in detecting the S-class. In 
all categories, our model outperforms the current 
methodologies, demonstrating the effectiveness 
of  the presented framework architecture. 
Referring to [30], which is the finest of  the 
reported studies, our model boosted the F1-Score 
for both S and V class detection by 13.67% and 
2.78%, respectively. However, the authors in [30] 
could get optimum PPV and SEN for V and S 
classes, but they did so at the expense of  reduced 
SEN for V and poor PPV for S classes. Also, the 
approach suggested in [30] is not end-to-end, 
as our model is. Compared with [35], which is 
the newest in the reported works, the presented 
model raised the F1-score for S, V, and N by 
53.93%, 16%, and 6.58%, respectively. Because 
most prior studies focused on the classification 
of  N, V, and S classes, the detection of  the F 
class in the suggested framework was compared 
with the results of  cardiologists only.

4.1 Effect of Architectural Parts of the 
Proposed Model

To examine if  the introduced structure can boost 
the detection process, we implemented the following 
tests: (the results are demonstrated in Table 4)
•	 Level 2 of  attention based on optimized 

network and level 1 of  attention based on 
SE network (Wi level 2 and Wi level 1): The 
suggested model.

MEDICAL PHYSICS

Table 2
The optimal fusion of variables for the suggested 

model
Variables Numerical Value

Dimension of output Embedding (zmodel) 64

Attention Layers 7

Batch Size (BS) 64

No. OC in Every Head 7

The Output Size of Linear Module (zinner) 512

Table 3
Attainment comparison between the presented model and the state-of-the-art.
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•	 Level 2 of  attention based on the optimized 
network only (Wi level 2 and Wo level 1): The 
presented framework without level 1 attention.

•	 Level 1 of  attention based on the SE network 
only (Wo level 2 and Wi level 1): The suggested 
model without attention part of  the optimized 
network.

•	 Transformer Framework (Typical 
transformer model): The typical transformer 
framework that involves self-attention [22].
The outcomes of  the tests have demonstrated 

that an optimized network can substitute for the 
self-attention technique. Therefore, a self-attention 
scheme can be a dispensable architecture. Especially 
with the use of  level 2 of  the attention technique, 
the efficiency of  the model has been considerably 
enhanced, particularly for the S-class. The use of  the 
SE network in this architecture has a considerable 
role in weighting the GH features. The input 
embedding architecture with level 1 attention can 
also boost the rhythmic information and thus 
enhance the performance of  the introduced model. 
We can notice slight developments in both types of  
beats (N-class and V-class), particularly in V-class, 
that support our prior estimation since the shape of  
V-class heartbeats varies significantly from those of  
N-class.
4.2  Parameters Reduction

One of  our aims is to develop a computationally 
efficient model for ECG signal classification. 
For this task, we configure a variable comparison 
test. Table 5 illustrates the comparison of  No. 

parameters between the suggested model and 
the transformer model. Note that the No. of  
parameters for the overall presented model is 
17.79% less than that for the typical transformer 
framework, while its value for level 2 attention 
based on the optimized network is 44% less than 
that for SAU (this is due to the use of  OC). As a 
result, our method yields an excellent result. The 
offered novel architecture serves as an optimized 
framework for future real-time ECG signal 
classification devices. The obtained outcomes 
show the potential of  the transformer framework 
for processing ECG signals. The presented 
attention architecture eliminates the drawbacks 
of  the exponential increase in parameters of  the 
SAU and attains a more powerful performance 
since the introduced model utilizes a hierarchical 
architecture; this is a significant issue since timing 
data has a high impact on the rhythm of  the 
heartbeats for a given ECG signal.
4.3 Achievement Comparison between the 
Introduced Model and Doctors

At the start of  this section, it is essential to point 
out that a team of  expert cardiologists debated 
and marked the heartbeats of  the MIT-BIH-
ARR-DB by unanimous agreement [36]. We 
consider this the "Ground Truth Classification" 
(GTC) for comparing the achievement of  the 
proposed model with that of  doctors specializing 
in cardiology. The testing data of  the ECG 
signals were fed to the model and provided to 
three separate (with various halls and different 
workplaces [37,38]) doctors to diagnose the 
heartbeats. To ensure the identity of  the labeling 
procedure, all medical doctors were given specific 
orders on the notation style of  the transitions 
between the heartbeats, and then the F1-Score, 
PPV, SEN, and ACC were computed for both 
the suggested model and the doctors. In order 
to determine the doctors' performance, at least 
two doctors' decisions must match to diagnose 

MEDICAL PHYSICS

Table 4
Outcomes of the introduced model with various structures

Table 5
Comparison of No. parameters between the 
suggested model and the transformer model

Architecture No. 
Parameters

Parameter
 Decrease (%)

Transformer model 3.26 M 17.79

Presented model 2.68 M

Only SAU 0.1114 M
44Only level 2 attention Based on the 

optimized network
0.0623 M

A NOVEL AND EFFICIENT FRAMEWORK FOR DIAGNOSING ECG SIGNALS 
BASED ON THE DIGITAL SIGNAL PROCESSING AND OPTIMIZED TANSFORMER...
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the heartbeat. The findings are shown in Table 6. 
The outcomes illustrate that the proposed model 
and doctors perform similarly, but the model has 
a slight boost, particularly in S-class detection 
(4.77%); this could be because of  a considerable 
analogy in morphology between the N and 
S classes. Furthermore, the closeness of  the 
outcomes indicates that the offered framework is 
robust in identifying cardiac disease.

The introduced model can be used in an intra-
patient setting and produce outstanding outcomes. 
The heartbeat allocation is shown in Table 7, and 
the findings are illustrated in Table 8. This scheme is 
less trustworthy, realistic, and generic than the inter-
patient setting.

5.  CONCLUSIONS
This study introduced an improved, end-to-end, 
powerful, and computationally efficient transformer 
model for classifying heart diseases using ECG 
signals obeying the AAMI standards and the inter-
patient mode. The presented framework uses 
attention techniques. Level 1 of  attention involves 
the use of  the SE network, which is responsible 
for weighting the LHSP features captured by the 
CNNs. Level 2 of  attention includes replacing the 
SAU of  the traditional transformer framework with 
the suggested optimized network. The optimized 
network is in charge of  weighting the GH features, 
and it includes the low-cost OC. The results showed 
that the achievements of  the presented model 
surpassed those of  the state-of-the-art and were 
comparable to those of  cardiologists. The future 

horizon of  this work is to implement the proposed 
model using an FPGA.
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