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Abstract: A method for estimating the transverse spin-Hall resistance for polycrystalline 
samples of  pure metals has been proposed. The spin-Hall effect coefficients for various 
metals of  3-6 periods, including rare-earth lanthanides, have been calculated. It is shown 
that the sign of  the calculated spin-Hall resistance always coincides with the experimental 
one. For most of  the considered metals the calculation result agrees with the experimental 
data. It is shown that the agreement of  the calculation results with experiment can be 
significantly improved if  the used approximations of  strong coupling and effective charge 
are supplemented by the assumption that the interaction of  collectivized conduction 
electrons in the construction of  the self-consistent field can be taken into account by the 
introduction of  the effective mass of  the conduction electron in the Hamiltonian of  the 
spin-orbit interaction. The reasons for the deviation for aluminum, copper, dysprosium, 
holmium, and gadolinium are discussed.
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1. INTRODUCTION
A promising direction for the development of  a 
new generation of  information technology and 
sensor devices [1] is non-magnetic spintronics 
based on the spin-Hall effect (SHE). It is 
accepted to distinguish between extrinsic and 
intrinsic SHE. The main role in the extrinsic 
SHE, predicted by M.I. Dyakonov and V.I. Perel 
in 1971 [2], the spin-dependent scattering of  
conduction electrons on impurity fields plays a 
major role. Such scattering provides a fraction of  
spin-polarized current of  the order of  fractions 
of  a percent with a coherence length of  the 
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order of  tens of  nanometers. This is sufficient 
for studies of  spin effects in nanostructures, 
but not for information and biotechnology. 
The intrinsic SHE predicted by S. Murakami in 
2003, J. Sinova in 2004 [3] and soon discovered 
experimentally [4] occurs due to the spin-orbit 
interaction of  the Rashba-Dresselhaus type [5]. 
This interaction is caused by the field of  atomic 
nuclei and can be induced by the non-zero 
orbital momentum of  the conduction electron, 
or directly by its momentum [6].

The intrinsic SHE is that the charge current 
in pure nonmagnetic metals with strong spin-
orbit interaction leads to a measurable transverse 
spin current [7]. There is also an opposite 
phenomenon, the inverse spin-Hall effect 
(ISHE), in that a spin current in a metal creates a 
transverse charge current [8]. Thus, the intrinsic 
SHE can be used in spintronics devices for both 
generation and detection of  spin current. It has 
been experimentally found that in some cases 
polycrystalline samples exhibit an increase in the 
angle of  the SHE, the fraction of  spin-polarized 
current, and the coherence length compared to 
single-crystal samples [9].

At present, reliable experimental data on the 
spin-Hall effect in metals are available. Therefore, 
within the approximations used in [10], the spin-
Hall effect coefficients of  nonmagnetic metals of  
the 5th and 6th periods were calculated [11]. For 
platinum, tantalum, gold, alpha-tungsten, palladium, 
molybdenum, and niobium, the calculation of  the 
transverse spin-Hall resistance gave results that 
agree with the published experimental ones within 
the measurement error. For beta-tungsten, the 
calculated values are about 2 times larger than the 
experimental values, reflecting the anomalously high 
SHE. The purposeful search for promising materials 
for spintronics devices, justification of  methods for 
their design, calculation, and optimization of  their 
signal characteristics implies expanding the basis 
for comparing calculated values with experimental 
ones. For this purpose, we calculated the constants 
of  the spin-Hall effect for metals of  the 4th and 3rd 
periods, as well as lanthanides.

2. SELF-CONSISTENT FIELD 
APPROXIMATION FOR COLLECTIVE 
ELECTRONS
The spin-orbit addition to the energy of  a single 
electron located in a given electric field with 
potential Ф(r) has the form [12]

2 2
ˆ ˆ ˆ .

2
eV s p

m c rαβγ α γ
β

ε ∂Φ
= −

∂


 (1)

Here m is the mass of  an electron with charge –e, 
ħ is the reduced Planck constant, c is the speed 
of  light in vacuum, εαβγ is the unit antisymmetric 
Levi-Civita tensor.

A pure metal crystal can be considered as a 
homonuclear molecule with metallic bonding. 
In the framework of  the Hartree-Fock one-
electron approximation, each collective electron 
is in a self-consistent field created by ion cores 
and other collective electrons [13]. The self-
consistent field is usually obtained by the method 
of  successive approximations. In the initial 
approximation, the wave function of  a collective 
electron is considered as a molecular orbital and 
is represented as a linear combination of  atomic 
orbitals (LCAO approximation).

For any spin state of  an electron it is possible 
to choose such a direction of  the z-axis that the 
projection of  its spin on this axis has a certain 
value sz, i.e. ( ) ( ) ( ), , .zsψ σ ψ δ σ=r r  In the strong 
coupling approximation, such a combination for 
the coordinate part of  the wave function can be 
the Wannier function [14]:

( ) ( ) ( )
1

1 exp ,
N

n n
n

i
N

ψ
=

= Ψ −∑r r R kR  (2)

Here Ψ(r) is the atomic function of  the outer 
electron, Rn is the translation vector, and N is 
the number of  nodes in the crystallite.

As a model potential of  the initial 
approximation we take the crystal field potential 
of  ion cores with effective charge Ze and 
coordinates Rk

( )
10

1 .
4

N

k k

eZ
πε =

Φ =
−∑r

r R
 (3)

Here ε0 is the electric constant.
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If  the atomic wave function Ψ(r) in relation 
(2) is to be considered hydrogen-like as an initial 
approximation, the value of  Z can be estimated 
by equating the coordinate of  the maximum 

maxρ  of  the radial component of  this function 
to the atomic radius Ra.

max ,B

a

aZ
R

ρ
=

where aB = 5.3·10-10 m is the Bohr radius. Fig. 1 
shows an example for estimating the value of  
Z for a metal of  the fourth period, i.e., when 
the square of  the modulus of  the radial wave 
function R40 has four maxima.

The approximation of  the effective charge in 
the model potential (3) together with the strong 
coupling approximation (2) means that, when 
constructing the self-consistent field for the 
collective electron, only its interaction with the 
nuclei and localized electrons of  ion cores is taken 
into account. In the next approximation, the 
interaction, including exchange, of  the collective 
electron with other conduction electrons should 
be taken into account. Such interaction is usually 
taken into account in the analysis of  transport 
phenomena in the framework of  the effective 
mass method. Formally, it is possible to replace 
in formula (1) the mass of  the free electron by 
the effective mass. However, there is no reason 
to believe that this should be the effective 
mass determining the conductivity and thermal 
conductivity of  the metal.

3. DYNAMICS OF THE CONDUCTION 
ELECTRON MOMENTUM IN A 
CRYSTAL
Let us consider a mesoscopically homogeneous 
and isotropic metal. Individual crystallites 
exhibit anisotropic properties at the microscopic 
level, but a physically small volume containing a 
large number of  randomly orientated crystallites 
will not have any distinguished direction. Under 
mesoscopic homogeneity and isotropy it is 
meant that there is no regular texture in the 
sample, i.e. the crystallites are oriented uniformly 
randomly. Regular texture may be formed during 
fabrication of  the sample, such as mechanical 
rolling or other deformation of  the sample, but 
not during sputtering. We will also assume that all 
crystallites have no intrinsic magnetic moment 
and there are no domain walls, so there is no 
significant spin perturbation during conduction 
electron transport across the boundary between 
crystallites.

The dynamics of  the electron momentum 
created by the perturbation (1) is described by 
the equation for the mean [13]

2

2 2

ˆ ˆ,

ˆ ˆ .
2

dp i V p
dt

e
s p

m c r r

δ
δ

αβγ
α γ

β δ

ε
ψ ψ

 = = 

∂ Φ
=

∂ ∂





 (4)

Integration over the coordinates and 
summation over the spin variables of  the 
conduction electron are implied in the right-
hand side of  relation (4). For any spin state 
of  the electron it is possible to choose such a 
direction of  the z-axis that the projection of  its 
spin on this axis has a certain value sz, i.e. ψ(r,σ) 
= ψ(r)δ(σ,sz). Then after summation in (4) on 
spin variables, putting ˆ =s s  and substituting 
variables r – Rk → r, we obtain

( )( )

( ) ( )

2 2

2 2
, , 10

5 3

exp
8

ˆ ˆ3 .

N

n m
n m k

k m k n

dp e Zs i
dt m c N

r l p
r r

δ α

αδγδ
α γ

πε
ε

=

= − ×

× Ψ + − − Ψ + −

∑ k R R

r R R r R R





 (5)

The operator 5 3
ˆ ˆ3 ,r l p

r r
αδγδ

α γ

ε
−


 in the right-hand 
side of  relation (5) is odd. Therefore, when Rn 

Fig. 1. Dependence of  the square of  the absolute value of  the 
radial wave function |R40|

2 on the dimensionless coordinate 
.ρ  Here the principal quantum number n = 4, orbital 

quantum number l = 0.
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– Rk = 0 and Rm – Rk = 0, its mean value is zero. 
The atomic functions are exponentially small 
at r > Ra = naB/Z, n is the principal quantum 
number. At the same time, the distance 
between atoms in the crystal is significantly 
larger than Ra. Therefore, in relation (5) we 
can restrict ourselves to the nearest-neighbor 
approximation and leave in the right-hand 
side only the summands for which Rn – Rk 
= aν and Rm – Rk = 0 or Rn – Rk = 0 and Rm 
– Rk = aν, where aν is the vector drawn from 
the atom under consideration with the centre 
in the point r = 0 to the nearest neighbor. 
Then, taking into account the Hermiticity of  
operator in relation (5), we obtain

( )
2 2

2 2
0

5 3

sin
4

ˆ ˆIm 3 .

dp e Zs
dt m c

r l p
r r

δ α
ν

αδγδ
ν α γ

πε
ε

= − ×

× Ψ − Ψ

ka



 (6)

Here Ψν(r) = Ψ(r + aν) – Ψ(r – aν) is a 
function with parity opposite to the parity of  
the function Ψ(r) and the summation by ν over 
pairs of  symmetrically located with respect to 
the considered atom its nearest neighbors is 
implied.

The right part of  relation (6) is equal to the 
force acting on the electron. It can be represented 
as the result of  the action of  the external electric 
field ESH on the electron. In the first order of  
smallness by kaν we obtain:

2

2 2
0

5 3

4

ˆ ˆIm 3 .

SH

Zes k
E a

m c
r l p
r r

β µ
α νµ

αβγα
ν β γ

πε
ε

= ×

× Ψ − Ψ





 (7)

Note that the quantum mean in formula (7) 
splits into two summands, the first of  which 
is proportional to the orbital momentum of  
the conduction electron and the second to its 
momentum, which agrees with the models [6].

4. INTRINSIC SPIN-HALL EFFECT IN 
POLYCRYSTALLINE METAL
Let us consider a macroscopic region of  a 
polycrystalline metal. For any state of  an 
electron it is possible to choose the direction 
of  the quantization axis (z-axis) so that the 
projection of  its orbital momentum on this 
axis has a certain value lz = l. The energy of  
an electron in an atom in an electric field 
depends on the projection of  its orbital 
momentum to the field direction [13]. 
Therefore, the orientation of  the atomic 
orbitals is determined by the position of  the 
crystallophysical axes of  a crystallite and we 
can consider that the relation (7) is written 
in the coordinate system associated with the 
symmetry axes of  the crystallite.

Let us introduce a laboratory coordinate 
system associated with the instruments that 
set the conduction current and measure the 
spin components. Therefore, the wave vector 
and spin vector of  conduction electrons 
should be considered as given in the laboratory 
coordinate system. The components of  the 
vectors and tensors in the laboratory system 
will be denoted by primed indices, and in the 
coordinate system associated with the crystal 
axes of  the domain, not primed.

We transform the wave vector and spin 
vector of  conduction electrons from the 
laboratory system into the system of  crystal 
axes kμ = pμμ'kμ', sβ = pββ'sβ', and the vector 
of  the Hall electric field from the system 
of  crystal axes into the laboratory system 

1 ,SH SHE p Eα α α α
−

′ ′=  where pα'α is a unitary rotation 
matrix. Substituting this transformation 
into equation (7), we average the ESH vector 
in the macroscopic region over random 
orientations of  crystallites. It is convenient 
to express the rotation matrix in terms of  
Euler angles:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

cos cos sin cos sin cos sin sin cos cos sin sin
sin cos cos cos sin sin sin cos cos cos cos sin ,

sin sin sin cos cos
ijp

α γ α β γ α γ α β γ α β
α γ α β γ α γ α β γ α β

β γ β γ β

− − − 
 = + − + − 
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Here 0 ≤ α ≤  2π is the precession angle, 0 
≤ β ≤π is the nutation angle, 0 ≤ γ ≤ 2π is 
the angle of  intrinsic rotation (Fig. 2). Then, 
for a mesoscopically isotropic metal, averaging 
over random crystallite orientations reduces to 
averaging over random uniformly distributed 
Euler angles.

2 1

2 2
0

5 3

4

ˆ ˆIm 3 .

SH

Zes k p p p
E a

m c
r l p
r r

β µ α α ββ µµ
α νµ

αβγα
ν β γβ

πε
ε

−
′ ′ ′ ′ ′

′ = ×

× Ψ − Ψ





 (8)

Here

( ) ( )
2 2

2
0 0 0

1 sin , , .
8

p p d d d
π π π

β α β γ α β γ
π

= ∫ ∫ ∫  (9)

In the analytical averaging of  equation 
(8), integrals of  the form (9) were calculated 
in coordinate form, and then the result was 
converted to invariant form.

Considering the SHE only in metals, we 
will use the ideal Fermi-gas approximation for 
conduction electrons. The applicability of  this 
model for conduction electrons in metals is 
justified by the fact that the thermodynamics 

of  the Fermi system is determined by its 
microscopic structure only near the Fermi 
surface and does not depend at all on what is 
done beyond a blurring in an energy range of  
order kBT, where kB is the Boltzmann constant, 
T is the temperature.

As a result, the denser the Fermi-gas in a 
metal, the more ideal it is [15]. Experimental 
studies of  the temperature dependence of  
the electron heat capacity in metals show that 
it corresponds well to the model of  an ideal 
Fermi-gas with a scalar effective mass m*. For 
many metals m* ≈ m. However, for gallium 
m* ≈ 2.5m and for lanthanum m* ≈ 0.23m. 
Assuming within the effective mass method in 
(8) k = jm*/(ħene), where j is the charge current 
density, ne is the concentration of  conduction 
electrons, we obtain

( )

*

2
0

2

5

,

48

3
Re .

SH S
e

S
e

R
n

eZ m mR
mc en

r
r
ν ν

ν

πε

 
= × 

 

= ×

− ∂
× Ψ Ψ

∂

PE j

r ra a
r

  (10)

Here P = 2sne is the spin polarization density 
vector. 

5. CALCULATION OF SPIN-HALL 
RESISTANCE
The first relation (10) coincides in form with 
the expression for the electronic Hall effect 
if  we replace the vector P/ne by the vector of  
magnetic induction B. Therefore, it can be 
expected that the spin-Hall effect constant 
RS depends as much on the effective mass 
of  conduction electrons, including its sign, 
and their concentration as the electronic 
Hall effect constant RH = (m*/m)/(ene). 
Then the second part of  formula (10) can 
be written as

( ) 2

2 5
0

3
Re .

48
H

S

reZRR
mc r

ν ν
νπε

− ∂
= Ψ Ψ

∂
r ra a

r
  (11)

Fig. 2. Transformation of  vector components at 
transition from the laboratory coordinate system (primed 
indices) to the system of  crystal axes. Here α, β and γ 

are Euler angles.
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The crystal field potential of  the form (3) is 
not centrally symmetric, and the orbital moment 
of  the electron is not a "good" quantum 
number for it. Therefore, the wave function 
of  an electron in the crystal is different from 
the wave function of  an electron in an isolated 
atom. Accordingly, the wave function Ψ(r) 
in relation (2) is not the wave function of  an 
external electron, such as the s-electron, of  an 
isolated atom. But it can always be represented 
as a linear combination of  the wave functions 
of  an isolated atom. As a result, in metals 
the conduction bands overlap, and part of  
the conduction electrons can be formed by 
collectivization of  p-electrons.

Let us use in relation (9) the approximation 
of  hydrogen-like atomic orbital for outer 
(valence) electrons

( ) ( ) ( ), , , .nlm nl lmx R x Yθ ϕ θ ϕΨ =  (12)
Here l is the orbital quantum number, m is 

the magnetic quantum number, θ is the polar 
angle, φ is the azimuthal angle, Rnl(x) is the 
radial part of  the wave function, x = Zr/aB, 
Ylm(θ, φ) is the angular wave function (spherical 
function). The radial hydrogen-like wave 
function (12) has the form [13]

 
( ) ( )

( ) 32

2 1

1 !2
!

2 2exp ,

nl

l
l

n l

n l
R x

n n l

x x xL
n n n

+
+

− −
= − ×

+  

    × −    
    

Here 2 1( )l
n lL t+
+  is a generalized Laguerre 

polynomial. For the s-electron, the normalized 
spherical function is ( )00 , 1 4 .Y θ ϕ π=  
The normalized spherical function of  the 
p-electron oriented along the polar axis is 

( ) ( ) ( )10 , 3 4 cos .Y iθ ϕ π θ=

Let us divide the nearest neighbors of  
the considered atom into groups with equal 
distances from it ,laν =a  where l = 1, 2, 
... is the number of  the group of  nearest 
neighbors.

For the s-electron of  conduction, directing 
the polar axis along the vector aν, we obtain in 
each of  the nearest neighbor groups

( )

( )

( ) ( ){ }

2

5

3
0

3
0

1

0 1 0 2
0

3

4

,

nl
l

B

n n

r
r

dR x dxb Zm dx
a x

y R x R x dy

ν ν
ν

∞

− ∂
Ψ Ψ =

∂

= ×

× −

∫

∫

r ra a
r

 (13)

Here y = cosθ, 2 2
1 2 ,l lx x b xb y= + +  

2 2
2 2 ,l lx x b xb y= + −  ,l Bb Z a aν =  ml is the 

number of  pairs of  symmetrically located 
nodes in the l-th group of  nearest neighbors.

For the p-electron of  conduction, let 
us direct the polar axis along the vector 
aν and count the azimuthal angle φ from 
the plane aνr. In spherical coordinates, 

( )
1 1 ,

sinrr r rθ ϕθ θ ϕ
∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
e e e

r
 with the orth eφ 

orthogonal to the plane aνr and the orth eθ 
forming an angle π/2 + θ with the polar axis. 
Then for the l-th group of  nearest neighbors 
we obtain

( )

( ) ( )

( ) ( ){ }

2

5

3 2
1

13 2
0

1

1 1 1 2
0

3

23 1
2

.

nl
l n

B

n n

r
r

ydR x dxb Z ym R x dx
a x x

y R x R x dy

ν ν
ν

π

∞

− ∂
Ψ Ψ =

∂
 −

= − × 
 

× −

∫

∫

r ra a
r

 (14)

6. COMPARISON OF CALCULATION 
RESULTS WITH EXPERIMENTAL 
VALUES
Table 1 lists the properties of  the atoms of  
the studied metals, the configurations of  their 
electron shells, and the parameters of  their 
crystal lattices.

The spin-Hall effect has been most 
thoroughly investigated in platinum [16]. For 
platinum, the atom radius is 139 pm, which 
for the 6s shell corresponds to Z ≈ 22.45. The 
face-centered lattice constant is a = 392 pm, 
there are 4 atoms per unit cell, and each atom 
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has 6 pairs of  nearest neighbors at a distance 
of  277 pm, next 3 pairs at a distance of  392 
pm and 12 pairs at a distance of  480 pm, b1 
= 117, b2 = 166, b3 = 204. At 80 K parameter 
RH = –2∙10-11 m3/(A∙s), for the s-electron by 
formulas (11) and (13) we obtain RS = 3.48·10-9 
Ω·m, for the p-electron by formulas (11) and 
(14) we obtain RS = –5.12·10-10 Ω·m.

Table 2 lists the theoretical, calculated by 
formulas (11), (13) and (14), and experimental 
values of  spin-Hall resistance RS for different 
metals. The values of  the Hall constant RH are 
taken from the reference book [17]. The values 
of  conductivity are taken from the works cited, 
if  they are not given there – from the reference 
book [17].

In experiment, the spin-Hall angle θSH = 
σRS is usually determined [9,18,19]. Here σ 
usually denoted as σxx is the conductivity of  the 
metal in the absence of  spin-orbit interaction. 
For platinum at 10 K, σ = 8.1·106 Ω-1m-1, θSH 
= 0.021 ± 0.005 [20]. Accordingly RS = (2.6 
± 0.7)·10-9 Ω·m. Agreement with experiment 

for s-electrons is obtained if  in formula (1) 

Table 1
Lattice parameters and electronic configurations of metals

Metal Lattice Electronic 
configuration

ra, pm Z a, pm Pairs of nearest neighbors

a1, пм m1 a2, пм m2 a3, пм m3

Au f.c.c. [Xe]4f145d106s1 144 21.7 408 288 6 408 3 500 12

Pt f.c.c. [Xe]4f145d96s1 139 22.45 392 277 6 392 3 480 12

α-W b.c.c. [Xe]4f145d46s2 141 22.77 316 274 4 316 3 449 6

β-W А15 [Xe]4f145d96s2 141 22.77 504 281 6 436 4 454 6

251 1 281 1 308 4

Ta b.c.c. [Xe]4f145d36s2 147 21 331 286 4 331 3 468 6

Lu h.c.p. [Xe]4f115d16s2 175 17.84 351 346 6 492 2 557 1

Ho h.c.p. [Xe]4f116s2 179 17.44 358 350 6 499 2 562 1

Dy h.c.p. [Xe]4f106s2 180 17.44 359 353 6 502 2 565 1

Cd h.c.p. [Xe]4f75d6s21 179 17.44 363 359 6 510 2 579 1

Ag f.c.c. [Kr]4d105s1 144 14.66 409 289 6 409 3 500 12

Pd f.c.c. [Kr]4d105s1 137 15.4 389 275 6 389 3 476 12

Mo b.c.c. [Kr]4d105s1 140 15.22 315 273 4 315 3 445 6

Nb b.c.c. [Kr]4d105s1 147 14.4 331 287 4 331 3 468 6

Cu f.c.c. [Ar]3d104s1 128 10.1 362 256 6 361 3 442 12

α-Mn А12 [Ar]3d104s1 137 10.25 889 277 8 451 12 460 8

Cr b.c.c. [Ar]3d104s1 129 10 289 250 4 289 3 408 6

V b.c.c. [Ar]3d104s1 135 9.72 302 262 4 302 3 428 6

Ti h.c.p. [Ar]3d104s1 147 8.86 295 291 6 412 2 468 1

Al f.c.c. [Ne]3s23p1 143 4.81 495 286 6 405 3 496 12

Table 2
Experimental values of spin-Hall effect constants e

SR  
and calculated values according to formula (11) s

SR  
and p

SR  together with (13) for s-electrons and (14) for 
p-electrons.

Metal σ, 105

(Ω·m)-1
θSH, % RH, 10-11,

m3/(А·s)
e
SR ,

10-9·Ω·m
s
SR ,

10-9·Ω·m
p

SR ,
10-9·Ω·m

Au 200 0.25±0.05 -7.3 12±3 7.1 -1.08

Pt 81 2.1±0.5 -2 2.6±0.7 3.48 -0.512

α-W 47.6 ≈7 11.1 -14.7 -13.96 2.56

β-W 20.4 -35±4 -162 740±80 1660 -294

Ta 3 -0.37±0.1 9.75 -13±4 -15.38 -2.15

Lu 12 1.4±0.2 -12 11±2 9.17 -1.28

Ho 11 14±2 -32 122±17 25.6 -3.34

Dy 18 5±1 -25 28±6 18.0 -2.47

Gd 7 4±1 -12 56±14 6.98 -1.07

Ag 150 0.7±0.1 -8.98 0.47±0.07 -11.7 1.43

Pd 40 0.64±0.1 -8.45 1.6±0.3 -13.4 1.64

Mo 28 -0.8±0.18 18 -2.8±0.7 25.4 -4.41

Nb 11 -0.87±0.2 8.88 -7.9±2 10.1 -11.9

Cu 160 0.32±0.03 -5.36 0.2±0.02 8.32 -1.18

α-Mn 1.42 -0.19±0.01 8.44 -13.3±1 -11.1 1.85

V 55 -1±0.1 7.9 -1.8±0.3 -9.73 1.39

Cr 1.2 -5.1±0.5 36.3 -42±4 -59 8.12

Ti 3.33 -0.036±0.004 1.0 -1.2±0.1 -1.0 0.134

Al 160 0.02±0.01 -3.3 -0.012±0.006 -1.68 0.19
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the mass of  a free electron is replaced by the 
effective mass m* ≈ (1.15 ± 0.15)m.

Gold is the second representative of  the 
6th period and a noble metal. The spin-Hall 
angle for gold is an order of  magnitude smaller 
than for platinum [21]. The face-centered cubic 
lattice constant a = 407.8 pm, there are 4 atoms 
per unit cell, 6 pairs of  nearest neighbors at a 
distance of  288 pm, next 3 pairs at a distance 
of  408 pm and 12 pairs at a distance of  500 pm. 
Agreement with experiment for s-electrons is 
obtained at m* ≈ (0.77 ± 0.1)m.

Tantalum has a body-centered cubic lattice 
with constant a = 331 pm. There are 2 atoms 
per unit cell, 4 pairs of  nearest neighbors at 286 
pm, then 3 pairs at 331 pm and 6 pairs at 468 
pm. Agreement with experiment for s-electrons 
will be obtained at m* ≈ (1.1 ± 0.1)m.

Tungsten in the stable alpha-modification 
has a body-centered cubic lattice with constant 
a = 316 pm. There are 2 atoms per unit cell, 
4 pairs of  nearest neighbors at 274 pm, then 
3 pairs at 316 pm and 6 pairs at 449 pm. In 
the experiment [22], a value of  |θSH| < 0.07 
was obtained on a 15 nm thick film, which 
corresponds to |RS| < 1.47·10–8 Ω·m. The 
error of  the experimentally measured spin-Hall 
angle in [22] is not given, but the calculated 
value agrees with the experimental one for 
s-electrons at m* ≈ (1.0 ± 0.03)m.

Tungsten in metastable beta-modification 
has a lattice of  the form A15 for compound 
AB3 with constant a = 503.6 pm, there are 8 
atoms per unit cell. For atom A (in the center 
and at the corners) there are 6 pairs of  nearest 
neighbors at a distance of  281 pm, then 4 pairs 
at a distance of  436 pm, 6 pairs at a distance 
of  454 pm, 3 pairs at a distance of  504 pm, 
12 pairs at a distance of  577 pm. For atom B 
(on the face) 1 pair of  nearest neighbors at a 
distance of  251 pm, then 1 pair at a distance of  
281 pm, 4 pairs at a distance of  308 pm, 2 pairs 
at a distance of  454 pm, 8 pairs at a distance 

of  471 pm. The calculation shows that atoms 
A and B contribute equally to the spin-Hall 
effect. Agreement with the experiment [23, 24] 
for s-electrons is obtained at m* ≈ (1.5 ± 0.1)m.

There are no reliable experimental data on 
the spin-Hall angle for rare-earth metals. In 
[25] the value ξSH = TintθSH is given, where Tint is 
the spin transfer coefficient. For estimation we 
take it equal to 1.

For gadolinium, hexagonal close-packed 
lattice constants are a = 363.4 pm and c = 578.5 
pm there are 2 atoms per unit cell, 6 pairs of  
nearest neighbors at 359 pm, then 2 pairs at 
510 pm and 1 pair at 579 pm.  Agreement with 
experiment for s-electrons will be obtained at 
m* ≈ (0.35 ± 0.05)m.

For dysprosium, hexagonal close-packed 
lattice constants are a = 359.3 pm and c = 565.4 
pm there are 2 atoms per unit cell, 6 pairs of  
nearest neighbors at 353 pm, then 2 pairs at 
502 pm and 1 pair at 565 pm. Agreement with 
experiment for s-electrons will be obtained at 
m* ≈ (0.8 ± 0.1)m.

For holmium, hexagonal close-packed 
lattice constants are a = 357.7 pm and c = 561.6 
pm there are 2 atoms per unit cell, 6 pairs of  
nearest neighbors at 350 pm, then 2 pairs at 
499 pm and 1 pair at 562 pm. Agreement with 
experiment for s-electrons is obtained at m* ≈ 
(0.46 ± 0.04)m.

For lutetium, hexagonal close-packed 
lattice constants are a = 351 pm and c = 556.7 
pm there are 2 atoms per unit cell, 6 pairs of  
nearest neighbors at 346 pm, then 2 pairs at 
492 pm and 1 pair at 557 pm. Agreement with 
experiment for s-electrons will be obtained at 
m* ≈ (1.1 ± 0.1)m.

Note that of  the considered rare-earth 
metals only lutetium is paramagnetic at 
all temperatures. At low temperatures 
dysprosium and holmium are ferromagnets. 
The magnetic behavior of  gadolinium is 
complex, various magnetic anomalies are 
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detected [26]. It can be hypothesized that at 
room temperature they lack only long-range 
spin ordering but, unlike lutetium, near-
order remains. Formula (2) does not take 
into account the exchange interaction of  
collective conduction electron with localized 
magnetization electrons. Therefore, 
relation (11) applies only to paramagnets 
such as lutetium. In the presence of  near 
spin ordering, in addition to the spin-Hall 
electric field of  the form (7), there may be 
a Hall electric field due to the anomalous 
Hall effect [27]. This phenomenon probably 
takes place in dysprosium, holmium and 
gadolinium.

When analyzing the elements of  the 5th 
period, the calculation by formulas (11) and 
(13) for the s-electrons of  conduction gives 
values that do not agree with the experimental 
ones. This is especially true, apparently, for 
palladium, which has no 5s-electrons.

For silver, the face-centered cubic lattice 
constant is a = 408.6 pm, there are 4 atoms 
per unit cell, 6 pairs of  nearest neighbors at 
289 pm, then 3 pairs at 409 pm, and 12 pairs at 
500 pm. Agreement with the experiment [28] 
for p-electrons will be obtained at m* ≈ (1.75 
± 0.07)m.

For molybdenum, the body-centered cubic 
lattice constant is a = 315 pm, there are 2 atoms 
per unit cell, 4 pairs of  nearest neighbors at 
273 pm, then 3 pairs at 315 pm, and 6 pairs at 
445 pm. Agreement with the experiment [20] 
for p-electrons will be obtained at m* ≈ (1.25 
± 0.15)m.

For palladium, the face-centered cubic 
lattice constant is a = 389 pm, there are 4 atoms 
per unit cell, 6 pairs of  nearest neighbors at 
275 pm, then 3 pairs at 389 pm, and 12 pairs at 
476 pm. Agreement with the experiment [25] 
for p-electrons will be obtained at m* ≈ (1.0 ± 
0.1)m.

For niobium, the body-centered cubic lattice 
constant is a = 331 pm, there are 2 atoms per 
unit cell, 4 pairs of  nearest neighbors at 287 
pm, then 3 pairs at 331 pm, and 6 pairs at 468 
pm. Agreement with the experiment [20] for 
p-electrons will be obtained at m* ≈ (1.25 ± 
0.15)m.

For copper, the face-centered cubic lattice 
constant is a = 361.5 pm, there are 4 atoms 
per unit cell, 6 pairs of  nearest neighbors at 
256 pm, then 3 pairs at 362 pm, and 12 pairs at 
442 pm. Agreement with the experiment [29] 
for s-electrons will be obtained at m* ≈ (6.4 ± 
0.4)m.

For titanium, hexagonal close-packed lattice 
constants are a = 295 pm, c = 469.7 pm, there 
are 2 atoms per unit cell, 6 pairs of  nearest 
neighbors at a distance of  291 pm, then 2 pairs 
at a distance of  412 pm and 1 pair at a distance 
of  468 pm. Manganese in alpha modification 
has structure A12, cubic lattice constant is a = 
889 pm, there are 58 atoms per unit cell, 8 pairs 
of  nearest neighbors at a distance of  277 pm, 
then 12 pairs at a distance of  451 pm and 8 
pairs at a distance of  460 pm. Agreement with 
the experiment [30] for s-electrons in titanium 
and manganese will be obtained at m* ≈ (0.91 
± 0.05)m.

For vanadium, the cubic body-centered 
lattice constant is a = 302.4 pm, there are 2 
atoms per unit cell, 4 pairs of  nearest neighbors 
at a distance of  262 pm, then 3 pairs at a 
distance of  302.4 pm and 6 pairs at a distance 
of  427.7 pm. Agreement with the experiment 
[27] for s-electrons will be obtained at m* ≈ 
(2.3 ± 0.2)m.

For chromium, the cubic body-centered 
lattice constant is a = 288.5 pm, there are 2 
atoms per unit cell, 4 pairs of  nearest neighbors 
at a distance of  249.8 pm, then 3 pairs at a 
distance of  288.5 pm, and 6 pairs at a distance 
of  408 pm. Agreement with the experiment 
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[27] for s-electrons will be obtained at m* ≈ 
(1.18 ± 0.05)m.

For aluminum, the face-centered cubic 
lattice constant is a = 405 pm, there are 4 atoms 
per unit cell, 6 pairs of  nearest neighbors at 
286 pm, then 3 pairs at 405 pm, and 12 pairs at 
496 pm. Agreement with the experiment [31] 
for p-electrons will be obtained at m* ≈ (3.9 
± 1)m. Aluminum has no d- and f-electrons 
on the inner shells. These electrons have a 
good shielding ability, so for transition and 
rare-earth metals the use of  a hydrogen-like 
orbital (12) with a corresponding effective 
charge for the conduction electrons is a 
justified approximation. For aluminum, such 
an approximation is apparently inapplicable. 
In addition, of  all the metals considered, 
only aluminum has a filled p-shell. As a 
result, the contribution to the SHE from 
s- and p-electrons almost compensates each 
other, and the small experimental value of  
the spin-Hall effect constant RS is obtained 
as a difference of  two relatively large values, 
not because of  the large effective mass of  
the charge carriers.

For copper, the experimental value 
of  the spin-Hall effect constant is very 
small, and as in the case of  aluminum, is 
probably obtained as the difference of  two 
relatively large values. Good agreement 
with the experiment for copper is obtained 
if  we assume that 90% of  the conduction 
electrons are collective electrons p-electrons 
and 10% are s-electrons.

Comparative analysis of  the data listed 
in Tables 1 and 2 shows that for elements 
of  even periods (6th and 4th) the sign of  
the measured spin-Hall resistance always 
coincides with the sign calculated for the 
s-electron, and for elements of  odd periods 
(5th and 3rd) – with the sign calculated for 
the p-electron.

7. CONCLUSION
The justification of  methods for designing 
spintronics systems, calculating and 
optimizing their characteristics requires 
additional assumptions about the system. 
Such assumptions are the representation of  
the wave function of  a collective conduction 
electron as a Wannier function, the effective 
charge approximation and the nearest-
neighbor approximation in the Hamiltonian 
(5), and the ideal Fermi-gas model for 
conduction electrons. The applicability 
of  these models for a particular problem 
should be substantiated experimentally. The 
intrinsic SHE coefficients calculated within 
the framework of  these models agree with 
the measured ones. The question of  the 
admissibility of  introducing the effective 
mass of  the conduction electron into the 
spin-orbit interaction Hamiltonian (1) to 
account for the interaction of  collective 
conduction electrons when constructing 
the self-consistent field potential (3) 
in the framework of  the one-electron 
approximation requires further study.

Spin polarization according to the 
mechanism described in this work does not 
require external magnetic fields and residual 
magnetization and therefore does not interfere 
with work in micro- and nano-sized spintronics 
structures. Of  undoubted interest is the search 
for new promising materials for spintronics 
devices based on metal alloys and intermetallic 
compounds. The design of  such spintronics 
systems, calculation and optimization of  
their characteristics is possible on the basis 
of  the described methods and approaches, 
if  we consider the crystallite of  intermetallic 
compound as a heteronuclear macromolecule. 
The methods of  constructing molecular 
orbitals for such structures, including those 
in the form of  Wannier functions, are well 
studied [32,33].

CONDENSED MATTER PHYSICSVYACHESLAV K. IGNATJEV, SERGEY V. 
PERCHENKO,  DMITRY A. STANKEVICH



99

RENSIT | 2024 | Vol. 16 | No. 1

REFERENCES
1. Bukharaev AA, Zvezdin AK, Pyatakov AP, 

Fetisov YK. Straintronics: a new trend in 
micro- and nanoelectronics and materials 
science. Phys.-Usp., 2018, 61:1175-1212; 
doi: 10.3367/UFNe.2018.01.038279.

2. Dyakonov MI,  Perel VI. Current-
induced spin orientation of  
electrons in semiconductors. Physics 
Letters A, 1971, 35(6):459-460; doi: 
10.1016/0375-9601(71)90196-4.

3. Sinova J, Culcer D, Niu Q, Sinitsyn NA, 
Jungwirth T, MacDonald AH. Universal 
Intrinsic Spin Hall Effect. Phys. Rev. Lett., 
2004, 92(12):126603-126606; doi: 10.1103/
PhysRevLett.92.

4. Wunderlich J, Kaestner B, Sinova J, 
Jungwirth T. Experimental observation of  
the spin-Hall effect in a two dimensional 
spin-orbit coupled semiconductor system. 
Phys. Rev. Lett., 2005, 94(4):047204-047216; 
doi: 10.1103/PhysRevLett. 94.047204.

5. Zhang S. Spin torques due to large Rashba 
fields.  In book "Spin Current", Edited by 
Maekawa S, Valenzuela SO, Saitoh E, 
Kimura T. Oxford, University Press, 2012, 
pp 424–431. 

6. Sinova J, Valenzuela SO, Wunderlich J, Back 
CH, Jungwirth T. Spin Hall effects. Reviews 
of  Modern Physics, 2015, 87:1213-1259; doi: 
10.1103/RevModPhys.87.1213.

7. Hoffmann A. Spin hall effects in 
metals. IEEE Transactions on Magnetics, 
2013, 49(10):5172-5193; doi: 10.1109/
TMAG.2013.2262947.

8. Saitoh E, Ueda M, Miyajima H, Tatara G. 
Conversion of  spin current into charge 
current at room temperature: Inverse spin-
Hall effect. Applied Physics Letters, 2006, 
88:182509; doi: 10.1063/1.2199473.

9. Xiao Y, Wang H, Fullerton EE. Crystalline 
Orientation–Dependent Spin Hall Effect in 

Epitaxial Platinum. Frontiers in Physics, 2022, 
9:791736; doi: 10.3389/fphy.2021.791736.

10. Ignatjev VК, Lebedev NG, Stankevich 
DA. The effect of  the spin polarization 
control of  conduction electrons through 
the deformation of  a ferromagnet. Technical 
Physics Letters, 2022, 48(12):25-28; doi: 
10.21883/TPL.2022.12.54941.19363,

11. Ignatjev VК, Lebedev NG, Stankevich 
DA.  The spin Hall effect in polycrystalline 
samples of  nonmagnetic fifth- and 
sixth-period metals. Technical Physics 
Letters, 2023, 49(3):60-62; doi: 10.21883/
TPL.2023.03.55688.19437.

12. Berestetskii VB, Pitaevskii LP, Lifshitz 
EM. Teoreticheskaya fizika. T. IV. Kvantovaya 
electrodinamika [Course of  Theoretical 
Physics, Vol. 4, Quantum Electrodynamics]. 
Moscow, Fizmatlit Publ., 2002, 720 p.

13. Landau LD, Lifshitz EM. Teoreticheskaya fizika. 
T. III. Kvantovaya mehanika. Nerelyativ-istskaya 
teoriya [Course of  Theoretical Physics, Vol. 3, 
Quantum Mechanics. Non-relativistic Theory]. 
Moscow, Fizmatlit Publ., 2004, 800 p.

14. Madelung O. Teoiriya tverdogo tela [Theory of  
solid states]. Moscow, Nauka Publ., 1980, 
416 p.

15. Kvasnikov IA. Teoriya ravnovesnyh sistem: 
Statisticheskaya fizika [Theory of  equilibrium 
systems: Statistical physics]. Moscow, 
Editorial URSS, 2002, 240 p.

16. Sinova J, Valenzuela SO, Wunderlich J, 
Back CH, Jungwirth T. Spin Hall effects. 
Reviews of  Modern Physics, 2015, 87:1213; 
doi: 10.1103/RevModPhys.87.1213.

17. Cardarelli F. Materials Handbook. Springer 
International Publishing AG. Switzerland. 
2018.

18. Dyakonov MI, Khaetskii AV. Spin 
Hall effect. In book "Spin Physics in 
Semiconductors". Edited by Dyakonov MI. 
Chapter 8, Ser. in Solid-State Sciences. New 

CONDENSED MATTER PHYSICS ANALYSIS OF THE INTRINSIC SPIN-HALL EFFECT 
IN METALS FOR SPINTRONICS PROBLEMS



100

No. 1 | Vol. 16 | 2024 | RENSIT

York, Springer, 2008, 157:211-243; doi: 
10.1007/978-3-319-65436-2_8.

19. Dyakonov MI.  Magnetoresistance due 
to edge spin accumulation. Physical Review 
Letters, 2007, 99(12):126601; doi: 10.1103/
PhysRevLett.99.126601.

20. Morota M, Niimi Y, Ohnishi K, Wei DH, 
Tanaka T, Kontani H, Kimura T, Otani 
Y. Indication of  intrinsic spin Hall effect 
in 4d and 5d transition metals. Physical 
Review B, 2011, 83:74405; doi: 10.1103/
PhysRevB.83.174405.

21. Vlaminck V, Pearson JE, Bader SD, 
Hoffmann A. Dependence of  spin 
pumping spin Hall effect measurements on 
layer thickness and stacking order. Physical 
Review B, 2013, 88(6):064414; doi: 10.1103/
PhysRevB.88.064414.

22. Pai C-F, Liu L, Tseng HW, Ralph DC, 
Buhrman RA. Spin transfer torque 
devices utilizing the giant spin Hall 
effect of  tungsten. Applied Physics Letters, 
2012, 101(12):122404- 122412; doi: 
10.1063/1.4753947.

23. Hao Q, Chen W, Xiao G. Beta (β) tungsten 
thin films: Structure, electron transport, 
and giant spin Hall effect. Applied Physics 
Letters, 2015, 106(18):182403; doi: 
10.1063/1.4919867.

24. Hao Q, Xiao G. Giant Spin Hall Effect and 
Switching Induced by Spin-Transfer Torque 
in a W/Co40Fe40B20/MgO Structure 
with Perpendicular Magnetic Anisotropy. 
Physical Review Applied, 2015, 3:034009; doi: 
10.1103/PhysRevApplied.3.034009.

25. Reynolds N, Jadaun P, Heron JT, Jermain 
CL, Gibbons J, Collette R, Buhrman RA. 
Schlom DG, Ralph DC. Spin-Hall Torques 
Generated by Rare-Earth (Lanthanide) Thin 
Films. Physical Review B, 2017, 95:064412; 
doi: 10.1103/PhysRevB.95.064412.

26. Belov KP, Belyanchikova MA, Levitin RZ, 
Nikitin SA. Redkozemel'nye ferromagnetiki i 

antiferromagnetiki [Rare-earth ferromagnets 
and antiferromagnets]. Moscow, Nauka 
Publ., 1965, 320 p.

27. Smejkal L, MacDonald AH, Sinova J, 
Nakatsuji S, Jungwirth T. Anomalous 
Hall antiferromagnets. Nature Reviews 
Materials, 2022, 7:482-496, doi: 10.1038/
s41578-022-00430-3.

28. Wang HL, Du CH, Pu Y, Adur R, Hammel 
PC, Yang FY. Scaling of  Spin Hall Angle 
in 3d, 4d, and 5d Metals from Y3Fe5O12. 
Metal Spin Pumping. Physical Review 
Letters, 2014, 112: 197201, doi: 10.1103/
PhysRevLett.112.197201.

29. Mosendz O, Vlaminck V, Pearson JE, Fradin 
FY. Bauer GEW, Bader SD, Hoffmann A. 
Detection and quantification of  inverse 
spin Hall effect from spin pumping in 
permalloy/normal metal bilayers. Physical 
Review B, 2010, 82(21):214403, doi: 10.1103/
PhysRevB.82.214403.

30. Du C, Wang H, Yang F, Hammel C. 
Systematic variation of  spin-orbit coupling 
with d-orbital filling: Large inverse spin 
hall effect in 3d transition metals. Physical 
Review B, 2014, 90:40407, doi: 10.1103/
PhysRevB.90.140407.

31. Valenzuela S, Tinkham M. Direct electronic 
measurement of  the spin Hall effect. 
Nature, 2006, 442:176-179; doi: 10.1038/
nature04937.

32. Bazilevskij MV. Metod molekulyarnyh orbit i 
reakcionnaya sposobnost' organicheskih molekul 
[Molecular orbital method and reactivity of  
organic molecules]. Moscow, Himiya Publ., 
1969, 304 p.

33. Gribov LA, Mushtakova SP. Kvantovaya 
himiya [Quantum chemistry]. Moscow, 
Gardariki Publ., 1999, 390 p.

CONDENSED MATTER PHYSICSVYACHESLAV K. IGNATJEV, SERGEY V. 
PERCHENKO,  DMITRY A. STANKEVICH


