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Abstract: Methods and optimization algorithms for automatic search for AUC-diagram-based 
features of  Parkinson’s disease and essential tremor were studied and developed. AUC diagrams 
are a new method for statistical analysis of  biomedical signals, based on visualizing the parameters 
of  wave train electrical activity in the brain and muscles. The effectiveness of  this method has been 
demonstrated in solving problems of  early and differential diagnosis of  Parkinson’s disease and 
essential tremor. The disadvantage of  this method is the need to construct and analyze a large 
number of  graphic diagrams. In this regard, automation of  the analysis of  AUC diagrams is an 
urgent task. The mathematical problem of  finding features based on the analysis of  AUC diagrams 
is reduced to an optimization problem in a multidimensional feature space. A distinctive feature 
of  the space constructed using AUC diagrams is the presence of  relatively large compact areas 
containing local maxima and minima. This property of  the feature space facilitates the search for 
solutions to the optimization problem, but at the same time requires the selection of  optimization 
algorithms and fitness functions that increase the likelihood of  detecting global extrema. In this 
work, methods for automatically searching for global extrema in the multidimensional space of  
features of  wave train electrical activity are investigated and developed.
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1. INTRODUCTION
The goal of  this work is to further develop 
the wave train electrical activity analysis 
method [1-18], designed by the authors for 
identifying regularities in biomedical signals. 
The concept behind the analysis of  wave train 
electrical activity is to merge the advantages of  
conventional spectra and wavelet spectrograms. 
This involves identifying wave trains (local 
maxima) on wavelet spectrograms of  signals, 
calculating these wave train characteristics –
namely, the central frequency of  the wave train, 
maximum power spectral density (PSD) of  the 
wave train, duration of  the wave train in seconds, 
duration of  the wave train in periods at the 
central frequency, bandwidth of  the wave train 
normalized to the central frequency of  the wave 
train, and instantaneous phase of  the wave train. 
Subsequently, mathematical statistics methods 
are employed to uncover generalized properties 
of  wave trains (for example, ranges of  listed 
wave train parameters) that are characteristic of  
the analyzed signal sample or differentiate one 
signal sample from another. The effectiveness 
of  the proposed method was demonstrated in 
the early (preclinical) and differential diagnosis 
of  neurodegenerative diseases Parkinson’s 
Disease (PD) and Essential Tremor (ET) [1-
3,16,17], as well as in the recognition of  so-called 
immature epileptic discharges in laboratory 
animals [15,18]. All examples discussed in this 
paper are based on the analysis of  a special type 
of  wave train electrical activity – the so-called 
cross-wave trains [3], which are local maxima 

on cross-spectra of  electromyographic (EMG) 
signals of  paired antagonist muscles in patients 
with ET and patients with the first stage of  PD.

The primary tool of  the wave train electrical 
activity analysis method is AUC diagrams [1-3]. 
An AUC diagram is a way to visualize statistical 
regularities that distinguish two signal samples. 
Different types of  AUC diagrams [2,3] are used 
to analyze various wave train parameters, but the 
principle of  using any AUC diagram boils down 
to creating a two-dimensional diagram, with 
the abscissa axis representing the value of  the 
lower boundary of  the investigated wave train 
parameter, and the ordinate axis representing the 
upper boundary of  this parameter (see example 
in Fig. 1). For each possible combination of  lower 
and upper wave train parameter boundaries, 
an AUC diagram uses a color scale to show 
the degree of  difference between one signal 
sample and another. The degree of  difference is 
characterized by the area under the ROC curve 
(AUC), constructed to compare the average 
number of  wave trains (per second of  time) 
found in the analyzed signal samples, such that 
the value of  the considered wave train parameter 
falls within the range between the considered 

Fig. 1. An example of  a frequency AUC diagram. 
The comparison involves the EMG signal envelopes in 
paired antagonist muscles in the left hands in two patient 
groups. The first group consists of  patients with the first 
stage of  PD with onset in the left hand (10 individuals), 
and the second group consists of  patients with ET (13 

individuals).
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lower and upper parameter boundaries (indicated 
on the abscissas and ordinates of  the diagram). 
Historically, a blue-red color scale is used for 
AUC diagrams, so values of  AUC close to 0 
correspond to blue areas on the diagram, while 
values close to 1 correspond to red areas. For 
researchers, both blue and red areas on the AUC 
diagram are of  interest. Blue areas correspond 
to wave train parameter ranges in which the 
number of  wave trains in the first sample is less 
than in the second, while red areas correspond to 
ranges in which the number of  wave trains in the 
first sample is more than in the second. In this 
paper, we will adhere to the same terminology. 
In particular, when automatically searching for 
features distinguishing signal samples, we will 
talk about "blue" and "red" solutions to the 
optimization problem corresponding to blue 
and red areas discovered on AUC diagrams.

Searching for regularities in signal samples 
using AUC diagrams manually is a rather 
laborious process. During data analysis, the 
researcher creates AUC diagrams of  various 
types. Upon detecting a blue or red area with a 
good AUC value on one of  the diagrams, the 
researcher decides to further investigate the 
found area. A constraint corresponding to the 
selected area on the AUC diagram is imposed 
on the investigated range of  the parameter, after 
which AUC diagrams of  all other types need 
to be rebuilt and reanalyzed. This described 
sequence of  actions is repeated iteratively until 
the observed AUC values cease to improve [2]. 
From the standpoint of  mathematical analysis, 
the mentioned algorithm for finding regularities 
represents solving an optimization problem in 
a twelve-dimensional space (six parameters of  
wave trains, each with a lower and upper bound) 
by iteratively moving two-dimensional slices 
of  this space (i.e., AUC diagrams). In practice, 
it may take a week or even a month of  manual 
work to search for signs of  neurodegenerative 
disease in a sample of  electroencephalographic 
(EEG) or electromyographic signals.

Of  course, the idea of  automatic analysis of  
AUC diagrams arose from the very beginning of  
the development of  the method for analyzing 
wave train electrical activity. Analyzing the twelve-
dimensional parameter space is not a difficult 
task for modern optimization algorithms, so we 
hoped to automate the search for regularities in 
biomedical signals using standard optimization 
algorithms [19], such as simulated annealing [20], 
pattern search [21], and genetic algorithms [22]. 
However, our experiments quickly showed that 
this idea was very naive.

The first problem we encountered in the 
automatic search for blue and red areas on AUC 
diagrams was that some automatically found 
wave train parameter ranges that differentiate 
signal samples with very good AUC values (close 
to 0 or 1) ceased to "operate" after we rounded 
the values of  these ranges to one or two decimal 
digits after dot. We termed this issue the "fragile 
solutions" problem. A careful examination of  
the fragile solutions problem revealed that in 
the twelve-dimensional wave train parameter 
space, indeed, there are very narrow areas with 
AUC values close to 0 or 1, around which AUC 
sharply worsens and approaches 0.5 (indicating 
an inability to distinguish the analyzed signal 
samples). During manual analysis of  AUC 
diagrams, a person naturally avoids entering 
such areas of  parameter space, focusing mainly 
on blue and red areas of  relatively large sizes. 
Standard optimization algorithms lack criteria 
for assessing the robustness (resistance to small 
parameter changes) of  the solutions found 
and therefore identify formally very good but 
impractical solutions.

The second problem encountered in the 
automatic analysis of  AUC diagrams was the 
large number of  solutions computed. From 
the perspective of  practical use of  wave train 
parameters for the recognition and differential 
diagnosis of  neurodegenerative diseases, one 
could simply select several good (in some sense) 
solutions and disregard the rest. However, if  
AUC diagrams are used as a research tool, it is 
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necessary to somehow compare and interpret 
the entire set of  found solutions as a whole. 
For example, when analyzing tremor signals in 
patients with the first stage of  PD, we found 
that the AUC diagram comparing the group of  
patients with tremor in the right hand with the 
group of  patients with ET (Fig. 2) substantially 
differs from the AUC diagram comparing 
the group of  patients with PD with tremor in 
the left hand (Fig. 1) with ET. This raised the 
question of  whether the observed differences 
are manifestations of  fundamentally different 
neurophysiological mechanisms in the right 
and left hands of  patients, or whether similar 
regularities are observed in both hands of  
patients but in a different ratio. The automatic 
search identified hundreds of  solutions on the 
AUC diagrams, which did not simplify answering 
the posed question.

Fortunately, automatic methods allow for the 
implementation of  more complex schemes for 
analyzing the parameter space of  wave trains 
than simply searching for global extrema, and we 
can take advantage of  them for a detailed study 

of  the structure and properties of  this space. The 
second part of  the paper discusses the method of  
so-called "multidimensional drilling of  the wave 
train parameter space", developed by the authors 
for the search and analysis of  local extrema in 
the wave train parameter space. The third part of  
the paper considers the problem of  assessing the 
robustness of  optimization problem solutions 
and proposes a criterion for assessing robustness, 
based on the physical meaning of  the wave trains 
parameter space. The fourth part of  the paper 
discusses the application of  developed statistical 
tools for researching clinical data of  patients and 
developing diagnostic procedures.

2. MULTIDIMENSIONAL DRILLING 
METHOD OF THE WAVE TRAIN 
PARAMETER SPACE
The idea of  multidimensional drilling of  the 
wave train parameter space aims to enhance 
the expressive capabilities of  conventional 
AUC diagrams through the application of  
optimization algorithms. The improved AUC 
diagrams (referred to as AUC-Drilling diagrams) 
differ from the standard ones in that, within 
each cell of  the diagram, not just the AUC value 
is calculated, but the global extremum of  the 
AUC function within the wave train parameter 
space. In the search for the global extremum, the 
optimization algorithm is allowed to vary all the 
boundaries of  the wave train parameters, except 
for the two that correspond to the abscissa and 
ordinate of  the diagram under consideration. 
These two parameter boundaries must remain 
within the confines of  the considered cell on the 
diagram.

Fig. 3 illustrates the idea of  multidimensional 
drilling of  the wave train parameter space using 
an analogy with drilling oil wells. The figure 
shows a three-dimensional cube (a particular 
case of  a twelve-dimensional cube). Each face 
of  this cube can correspond to a certain AUC-
Drilling diagram; the top face is chosen for the 
illustration. The perpendicular edges of  the top 
face correspond to the axes of  the abscissa and 

Fig. 2. An example of  a frequency AUC diagram. 
The diagram compares the envelopes of  electromyographic 
(EMG) signals in paired antagonist muscles in the right 
hands in two patient groups. The first group consists of  
patients with the first stage of  PD with onset on the right 
hand (12 individuals), and the second group comprises 
patients with ET (13 individuals). The arrow points to 

a large red area absent in Fig. 1.
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ordinate of  the AUC-Drilling diagram. In each 
cell of  the top face of  the cube, a well is drilled 
through the remaining ten dimensions of  the 
space, to find areas of  the space where AUC 
values are close to 0 or 1. Depending on which 
specific optimization problem solutions we are 
looking for, blue or red, two different AUC-
Drilling diagrams can be constructed – blue or 
red.

The initial experiments with multidimensional 
drilling revealed that the results of  EMG signal 
analysis of  patients with PD and ET differ 
substantially from those shown by conventional 
AUC diagrams. Continuing the analogy with 
mineral extraction, the difference between the 
types of  AUC diagrams is akin to that between 
surface geological surveys and exploratory 
drilling. Primarily, we observed that in some 
frequency ranges, both blue and red solutions 
with AUC close to 0 and 1 exist simultaneously. 
On conventional AUC diagrams, these solutions 
may overlap each other, preventing a complete 
view of  the regularities within the wave train 
parameter space. AUC-Drilling diagrams separate 
blue and red solutions into different diagrams, 
allowing us to study them independently.

For example, on the red AUC-Drilling 
diagram for the left hands of  patients, a red 

area was discovered (see Fig. 4, area A) that is 
invisible on the corresponding AUC diagram 
(Fig. 1) because it is covered by a certain blue 
area (see Fig. 5).

At the same time, it was found that the red 
areas on the AUC-Drilling diagrams for the right 

Fig. 3. The concept of  multidimensional drilling of  the 
wave train parameter space.

Fig. 4. An example of  a red frequency AUC-Drilling 
diagram. The envelopes of  EMG signals in paired 
antagonist muscles in the left hands in two patient groups 
are compared. The patient groups are the same as in 
Fig. 1. A red area, invisible on the corresponding AUC 
diagram in Fig. 1 due to its overlap with a certain blue 
area, is indicated by an arrow. To solve the optimization 
problem here and in subsequent considerations, a pattern 

search algorithm is applied [21].

Fig. 5. An example of  a blue frequency AUC-
Drilling diagram. The envelopes of  EMG signals in 
paired antagonist muscles in the left hands in two patient 
groups are compared. The patient groups are the same as 

in Figs. 1 and 4.
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(Fig. 6) and left (Fig. 4) hands of  patients in the 
frequency range below 25 Hz have roughly the 
same shape. The difference in the red areas on 
the corresponding AUC diagrams (see Figs. 1 and 
2) turned out to be only apparent. In particular, 
the large red area on the AUC diagram for the 
right hands of  patients (Fig. 2, area B) stands out 
only because, in this frequency range, there are 
no blue solutions (see Fig. 7, area C).

The examples of  AUC-Drilling diagrams 
discussed above allow us to hypothesize 
that the tremor in the left and right hands of  
patients with PD and ET is controlled by the 
same neurophysiological mechanisms, but the 
impact of  these mechanisms occurs in different 
ratios, leading to different clinical presentations. 
This observation supports the conclusion that 
different algorithms need to be applied for 
diagnosing patients with PD with left-sided and 
right-sided onset [3].

3. ROBUSTNESS ASSESSMENT 
OF OPTIMIZATION PROBLEM 
SOLUTIONS
Robust solutions of  an optimization problem are 
defined as points in the explored parameter space 
that possess a certain neighborhood in which the 
solution remains good in some sense [23-25]. As 
a quantitative assessment of  the robustness of  a 
solution, one can adopt the maximum radius R 
of  a multidimensional ellipsoid (stability radius) 
surrounding the considered solution, inside 
which no "bad" solutions exist. In the context 
of  this study, we consider "bad" solutions to 
be those in which the AUC value, compared 
to the AUC at the center of  the ellipsoid, has 
approached the value of  0.5 by more than half. 
For instance, if  a blue solution with an AUC value 
of  0.1 is considered, the quantitative assessment 
of  the robustness of  this solution would be the 
maximum radius of  the ellipsoid within which 
AUC values do not exceed 0.1 + (0.5 - 0.1)/2 
= 0.3. If  a red solution with an AUC value of  
0.9 is considered, the quantitative assessment 
of  the robustness of  this solution would be the 
maximum radius of  the ellipsoid within which 
AUC values are not lower than 0.9 - (0.9 - 0.5)/2 
= 0.7. Note that different coordinate axes in 
the wave train parameter space correspond to 
different units of  measurement, so measuring 
the radius of  the ellipsoid in absolute units does 
not make sense. We measure the radius of  the 
ellipsoid in percentages of  the ellipsoid's center 
coordinate values.

Fig. 6. An example of  a red frequency AUC-Drilling 
diagram. The envelopes of  EMG signals in paired 
antagonist muscles in the right hands in two patient 
groups are compared. The patient groups are the same 

as in Fig. 2.

Fig. 7. An example of  a blue frequency AUC-Drilling 
diagram. The envelopes of  EMG signals in paired 
antagonist muscles in the right hands in two patient 
groups are compared. The patient groups are the same as 
in Figs. 2 and 6. An area where blue solutions are absent 

is indicated by an arrow.
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Unfortunately, the twelve-dimensional 
wave train parameter space does not have an 
analytical description, so the only tool available 
for assessing the robustness of  blue and red 
solutions in the wave train parameter space is a 
computational experiment. As the neighborhood 
of  the considered solution, models also must be 
applied.

Currently, we use the following model for 
the neighborhood of  the optimization problem 
solution. The considered solution S is a point 
in the twelve-dimensional space and can be 
described by a vector of  twelve coordinates 
<S1, ..., S12>. The model of  the neighborhood 
(ellipsoid) with radius R of  the solution S in the 
parameter space we call the set of  all points P 
such that each coordinate Pi of  the point differs 
from the corresponding coordinate Si of  the 
explored solution by a value of  R or –R (see 
Fig. 8).

It should be noted that the described ellipsoid 
model is only a crude approximation of  the exact 
description of  the set of  points located in the 
neighborhood of  the solution. However, the use 
of  this simplified model allows for a significant 
reduction in the computational resources needed 
for conducting computational experiments 
while still providing a general understanding 
of  the properties of  the optimization problem 
solutions.

Fig. 9 presents histograms of  the quantitative 
robustness assessments of  the optimization 
problem solutions found during the construction 
of  frequency AUC-Drilling diagrams, comparing 
the EMG signal envelopes in paired antagonist 
muscles in patient groups with the first stage 
of  PD and patients with ET, as shown in Figs. 
4-7. The histograms in Fig. 9 indicate that a 
significant number of  solutions have robustness 
close to 0. This is even though the model of  the 
multidimensional ellipsoid (Fig. 8) is inclined 
to overestimate the robustness assessments of  
solutions since it does not account for every 
point adjacent to the explored solution in the 
wave train parameter space. This means that the 
presence of  "fragile" solutions, unfortunately, 
is one of  the inherent properties of  the wave 
train parameter space, and it must be taken 
into account when solving medical diagnostic 
problems.

One of  the unique properties of  the wave 
train parameter space is that each point in this 
space has a simple physical meaning, namely, the 
average number of  Q1 and Q2 wave trains per 
second observed in the first and second signal 
samples respectively, whose parameters fall within 

MEDICAL PHYSICS

Fig. 8. The model of  the neighborhood (twelve-
dimensional ellipsoid) of  the optimization problem 
solution in the wave train parameter space. The figure 

shows only three dimensions of  the ellipsoid.

Fig. 9. Histograms of  quantitative R robustness 
assessments of  optimization problem solutions during 
the construction of  frequency AUC-Drilling diagrams 
comparing the EMG signal envelopes in paired antagonist 
muscles in patient groups with the first stage of  PD and 

patients with ET.
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the ranges corresponding to the considered point 
in the space. This opens opportunities for the 
development of  new methods for assessing the 
robustness of  optimization problem solutions, 
which are not based on the concept of  "stability 
radius" and other geometric analogies.

As a measure of  solution robustness, 
the authors proposed using the maximum 
average number of  wave trains observed in the 
considered signal samples, Q = max(Q1, Q2). The 
idea of  the Q robustness assessment is based on 
an empirical observation made while studying 
the wave train parameter space. It turned out 
that fragile solutions often arise at points in the 
space imposing strong restrictions on certain 
wave train parameters. In such points of  the 
space, the number of  observed wave trains 
decreases to a few wave trains in tens or even 
hundreds of  seconds. As a consequence, the 
probability increases sharply that at this point in 
space, the ratio of  the number of  wave trains 
observed in the two analyzed signal samples can 
substantially change due to random fluctuations 
in the number of  wave trains. As a result, we 
obtain a solution with a very good AUC value, 
close to 0 or 1, which stops "working" with the 
slightest change in parameter boundaries.

The study of  the correlation between 
the robustness estimates Q and R based 
on experimental data confirmed that 
both assessments yield similar results (see 
Fig. 10). In particular, it was found that the 
Spearman's rank correlation between the Q 
and R estimates is 0.6-0.8 with a high level of  
significance (p < 0.001) when comparing both 
the right and left hands of  patients, for both 
red and blue solutions of  the optimization 
problem. Interestingly, a significant number 
of  the solutions do not fit this regularity and 
demonstrate high R robustness scores with Q 
metric values close to zero (points located near 
the ordinate axis in Fig. 10). This indicates the 
potential risk of  using the stability radius and 
similar geometric estimates, as they may not 
always identify potentially fragile solutions.

A significant advantage of  the robustness 
estimate Q, compared to the R estimate, is 
its computational simplicity. Estimating the 
number of  wave trains, whose parameter 
values fall within the considered intervals, is 
an intermediate step in calculating AUC, so 
any constraints on the Q value can be added to 
the optimization algorithm’s objective function 
without additional computational costs. The 
situation with the robustness estimate R is 
quite different because an additional check of  
the solutions’ neighborhood, assessed by the 
optimization algorithm, substantially increases 
the time to solve the optimization problem.

Currently, we apply a constraint on Q directly 
in the process of  multidimensional drilling of  
the wave train parameter space, and then we 
perform an additional check of  the robustness 
of  the found solutions using the Q and R 
metrics. In particular, during the calculation 
of  the AUC-Drilling diagrams presented in 
Figs. 4-7, an additional condition Q ≥ 0.5 was 
applied. In the subsequent verification of  the 
found solutions, restrictions on the AUC, Q, R, 
and other characteristics of  the solutions can be 
established.

Fig. 10. Correlation between robustness estimates Q 
and R for optimization problem solutions during the 
construction of  frequency AUC-Drilling diagrams, 
comparing the EMG signal envelopes in paired antagonist 
muscles in patient groups with the first stage of  PD and 

patients with ET.
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4. DISCUSSION
Experiments with clinical data have shown that 
using the method of  multidimensional drilling 
of  wave train parameter space, it is possible to 
compute several dozen or even hundreds of  
optimization solutions with high robustness 
suitable for clinical diagnostics of  patients. 
A natural question arises: is there any reason 
to analyze such a large number of  solutions? 
What benefit can be derived from them in 
studying the neurophysiological mechanisms of  
neurodegenerative diseases? Should all found 
solutions be used for clinical diagnostics, and 
what danger lies in the application of  a large 
number of  solutions? These questions are 
certainly subject to further research, but we can 
make some observations based on the experience 
of  studying the clinical data of  patients.

Typically, the set of  solutions computed by 
the multidimensional drilling method is quite 
heterogeneous. Fig. 10 shows an example of  
a correlation matrix of  225 solutions, each 
characterized by a vector of  12 numbers 
representing the average number of  wave trains 
per second observed in a patient with ET or a 
patient with the first stage of  PD with onset 
in the left hand. In this example, only the red 
solutions are considered. As seen in Fig. 11, 

some solutions yield approximately similar 
results, while others yield completely different 
results. This means that combining some 
solutions can substantially increase the 
accuracy of  patient diagnostics. However, 
combining solutions that are similar to each 
other can lead to overfitting of  the diagnostic 
procedure, i.e., a very confident diagnosis of  
patients included in the training set and poor 
recognition of  new patients.

Comparison of  the number of  wave 
trains satisfying different solutions allows 
researchers to assess the homogeneity of  
the patient sample, and clinicians to verify 
the diagnosis of  individual patients. Let us 
consider an example of  a correlation matrix 
of  a patient group in Fig. 12. The correlation 
matrix vividly shows that patients diagnosed 
with PD differ from patients diagnosed 
with ET. However, in some cases, the EMG 
parameters of  a patient may more closely 
resemble those of  patients with a different 
diagnosis. Of  course, this requires a careful 
reexamination of  the patient’s clinical data 
and possibly further analysis.

MEDICAL PHYSICS

Fig. 11. Correlation matrix of  225 optimization 
solutions obtained using the multidimensional drilling 
method in the wave train parameter space in patients 
with the first stage of  PD with onset in the left hand 
(5 individuals) and patients with ET (7 individuals). 
Each solution is characterized by a vector of  12 values 
representing the average number of  wave trains per second 

observed in the respective patient.

Fig. 12. Correlation matrix of  the patient group with 
PD and patients with ET, as considered in Figure 11. 
Each patient is characterized by a vector of  225 values of  
the average number of  wave trains per second, satisfying 
certain 225 solutions of  the optimization problem. 
The correlation matrix indicates, in particular, that the 

diagnosis of  patient 6 needs to be reevaluated.
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5. CONCLUSIONS
The main idea of  the method for analyzing wave 
train electrical activity lies in the statistical analysis 
and search for regularities in the parameters of  
local maxima (wave trains) identified in wavelet 
spectrograms of  signals. The method is versatile 
and can be applied to investigate biomedical 
signals of  various types, including EEG, EMG, 
and accelerometer signals.

AUC diagrams serve as the primary working 
tool of  the wave train electrical activity analysis 
method. The new type of  AUC diagrams 
described in the paper combines visualization 
tools for wave train parameters and automated 
search tools for regularities in the wave train 
parameter space. This statistical tool will be 
useful both for studying the neurophysiological 
mechanisms affecting the clinical condition 
of  patients and for solving practical problems 
related to identifying diagnostic features of  
neurodegenerative disorders and developing 
diagnostic algorithms.

The issue of  "fragile solutions" discovered 
during the investigation of  clinical patient data 
has been addressed. Two fundamentally different 
approaches to assessing the robustness of  
solutions to the optimization problem, computed 
during the analysis of  wave train parameter 
space, have been proposed. The first approach 
is based on calculating the stability radius of  the 
investigated solution. The second approach is 
based on th physical meaning of  the wave train 
parameter space. A comparison of  robustness 
estimates of  solutions to the optimization 
problem based on these two principles has been 
conducted.
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