
53

RENSIT | 2024 | Vol. 16 | No. 1

DOI: 10.17725/j.rensit.2024.16.053

A Robust and Efficient Scheme for ECG Signal Classification 
Based on Digital Signal Processing, Feature Engineering 
Selection, and Random Forest Classifier
Anas Fouad Ahmed, Baraa M. Albaker
Al-Iraqia University, College of  Engineering, Electrical Engineering Department, http://www.aliraqia.edu.iq/
Al Adhmia-Haiba Khaton, 6029, Baghdad, Iraq
E-mail: anas.ahmed@aliraqia.edu.iq, baraamalbaker@aliraqia.edu.iq
Hadeel N. Abdullah
University of  Technology, Electrical Engineering Department, http://www.uotechnology.edu.iq/
Al wehada-Neighborhood, 19006, Baghdad, Iraq
E-mail: 30002@uotechnology.edu.iq
Received September 11, 2023, peer-reviewed September 18, 2023, accepted September 25, 2023, published March 15, 2024.
Abstract: Determining the optimal integration between features and classifiers has a significant 
effect on the performance of  automatic heartbeat diagnostic systems. This importance stands out 
when dealing with critical applications that contain limited resources devices and require accurate 
and fast heartbeat classifiers to help the doctor make an accurate and quick diagnosis of  heart 
diseases. Aiming at this task, this paper introduces a novel approach for choosing the optimal 
features of  the ECG signal to be used with the Random Forest (RF) classifier following the inter-
patient method for ECG signals division and obeying the instructions of  the "Association for the 
Advancement of  Medical Instrumentation (AAMI)." The features were chosen based on the concept 
of  "Mutual Information Ranking (MIR)." The presented framework is comprehensive in terms of  
performing all the necessary processes efficiently, starting from ECG digital signal processing, 
segmentation, feature extraction, feature selection, and ending with ECG classification. The results 
of  the experiments demonstrate that features corresponding to the normalized QRS width and the 
normalized RR intervals are the most influential features in the heartbeat classification. All tests 
were conducted using real ECG signals taken from the "MIT-BIH" Arrhythmia Database (MIT-
BIH-ARR-DB). The suggested scheme attained the following F1-scores: 91.02%, 73.17%, and 
98.04% in the classification of  the Ventricular Ectopic Beats (V or VEB), Supraventricular Ectopic 
Beats (S or SVEB), and Normal Beats (N or NB), respectively. The overall accuracy was 96.26%. 
Despite its relative simplicity and reliance on few features, the proposed approach outperforms 
most of  the reported state-of-the-art.
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(DWT); ECG classification; Random Forest (RF)
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1. INTRODUCTION
Cardiovascular ailments are the main reason 
for killing millions of  people around the world, 
and the electrocardiogram (ECG) signal is a 
magnificent and effective means in their diagnosis 
[1,2]. The ECG is a low-cost and non-invasive 
means frequently used by cardiologists to record 
electrical activity and to detect abnormalities in 
the heart [3-5]. The ECG instrument senses this 
electrical activity using electrodes placed on the 
body and shows it on the screen [6-9]. An ECG 
signal is composed of  a collection of  periodical 
heartbeats, which are examined by a doctor 
to make a diagnosis and treatment [10]. This 
procedure relatively requires a lot of  time and 
intensive efforts, in addition to human errors that 
may occur due to workload [11]. Nowadays, it has 
become easier to acquire the ECG signal due to 
the availability of  portable and wearable devices 
and the possibility of  using them in ambulatory 
healthcare applications [12]. Employing these 
devices requires evolution not only in accuracy 
and reliability but also simple and computationally 
efficient methods for intelligent automatic 
heartbeat detection and classification to limit the 
amount of  information or data required to be 
sent to the doctor to evaluate the case and give 
counsel [13].

By referring to the AAMI, the approaches that 
classify the heartbeats must at most discriminate 
the following categories: Fusion Beats (F or FB), 
Unclassifiable or paced Beats (Q or QB), (VEB), 
(SVEB), and (NB). It is necessary to detect and 
count the number of  period ectopic beats to 
avoid dangerous heart disease. For instance, 
the repetition of  SVEB is related to dangerous 
illness, "Atrial Fibrillation," also the recurrence 
of  VEB is exceptionally indicator because it can 
be utilized as a predictor of  the most dangerous 
disease, "Heart Failure," which often leads to 
death [14,15].

Many efforts have been made by researchers 
in recent years to solve the problem of  automatic 
diagnosing or classifying heartbeats by proposing 
various techniques to fulfill this task. Generally, 
these techniques can be classified into two 
approaches: the first one is based on a deep-
learning strategy, while the other is based on a 
feature-engineering. Some researchers have applied 

Deep Neural Networks (DNNs) for classifying 
ECG signals [16-18], but the DNN experiences 
redundancy of  parameters and complexity of  
calculations. It is significant to mention here that 
the analytical classification based on features 
engineering can assist cardiologists in accurately 
diagnosing and precisely drawing up suitable 
therapy schedules by taking advantage of  the 
understandable extracted features.

Deep learning algorithms, on the other 
hand, are unable to provide cardiologists with 
interpretable features and cannot analyze the 
effects of  feature selection on ECG classification 
efficiency because the features are tacitly captured 
by deep layers in the network.One of  the most 
important surveys of  heartbeat classification 
schemes was introduced by Luz et al. [19]. 
Machine learning (ML) techniques have enticed 
great interest nowadays, and perhaps the most 
famous of  these is the RF technique, in which a 
set of  classifiers is produced as an "ensemble" of  
Decision Trees (DTs) [20]. The input is classified 
by the ensemble (forest) based on the majority 
principle [21]. Therefore, the RF classifier is 
considered extremely effective and has been 
recommended for resource-restricted devices that 
are intended to work in real-time [22-25]. Emanit 
[26] applied the DWT to the ECG signals and 
used the resultant coefficients as features to train 
the RF classifier. Llamedo et al. [27] presented 
a simple ECG classifier that classifies the SVEB 
and VEB based on coefficients of  the DWT and 
RR intervals. Alickovic and Subasi [28] suggested 
utilizing the distribution of  DWT coefficients 
to extract various features that feed into RF for 
heartbeats classification purposes. Gutierrez et 
al. [29] classified ECG signals using Quadratic 
Wavelet Transform (QWT) and neural networks. 
Ganesh and Kumaraswamy [30] proposed a 
method for ECG signals classification based on 
RR intervals and features extracted by taking 
the Discrete Cosine Transform (DCT) for ECG 
signals to train the RF classifier. Park et al. [31] 
used collections of  different time-domain features 
with an RF classifier for heartbeat classification. 
Aravind et al. [32] offered an algorithm for 
heartbeat classification using the Convolutional 
Neural Network (CNN) and Continuous Wavelet 
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Transform (CWT). Yuanlu et al. [33] classified the 
ECG signal based on deep residual CNN.

The aforementioned studies achieved excellent 
accuracy (ACCo); however, some limitations exist, 
such as few of  them: obeyed the AAMI guidelines 
regarding the type of  heartbeat to be detected 
and classified, offered a robust model that can 
be applied to imbalanced data or signals directly, 
and employed the other metrics to evaluate the 
classification quality, such as F1-Score, besides the 
Positive Predictivity (PPr), and Sensitivity (Sen), 
that may be degraded because of  the majority class 
domination. Most importantly of  all, there are no 
previous studies (as far as the authors know) that 
deal with the use of  the RF classifier obeying the 
inter-patient mode. In this mode, the signals are 
separated into two groups: the first is used in the 
training phase and the second is used in the test 
phase, and there is no intersection between the 
two groups (there are no signals taken from the 
same patient in both groups) this leads to a more 
reliable assessment of  the performance of  the 
classifier. In this research, we used an efficient 
RF classifier for classifying the ECG signals 
according to the AAMI recommendations and 
the inter-patient mode. The following are the 
contributions of  this work:
• We introduce a comprehensive, robust, 

and efficient framework for ECG signals 
classification based on an improved RF 
classifier, taking into consideration all the 
required digital signal processing and analysis 
for the collected signals and adhering to the 
instructions of  the AAMI and the inter-
patient mode.

• A simple and efficient mechanism for 
detecting R-peaks based on trigonometry is 
proposed.

• New considerations for evaluating the 
normalized features are presented.

• Optimizing the performance of  the RF 
classifier without requiring complex 
computations by using the MIR to obtain an 
optimal and reduced group of  features from 
a large feature set that contains the most 
important features suggested in previous 
studies.

• Successful dealing with the problem of  
imbalanced data of  ECG signals where 
the abnormal signals are much less than 
normal signals; this attained by using the RF 
classifier, which is actually composed of  an 
ensemble of  several DTs that are sensitive 
to imbalanced classes and it takes a Uniform 
Random Sample (URS) from the data of  ECG 
signal with replacement strategy.

• An understandable analysis for ECG signal 
is attained by providing feature sets from 
various ECG signals, which are indispensable 
for medical purposes.

2. PROPOSED FRAMEWORK
The complete block diagram of  the suggested 
framework is illustrated in Fig. 1. It consists 
of  the following stages: collecting ECG signals, 
digital signal preprocessing, preparing heartbeats, 
features extraction, features selection, heartbeats 
classification, and classifier evaluation. Each 
one of  these stages is further detailed in the 
subsequent sections.

Fig. 1. Block diagram of  suggested framework.

A ROBUST AND EFFICIENT SCHEME FOR ECG SIGNAL CLASSIFICATION BASED 
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The relabeling process for the collected signals 
was conducted to obtain five heartbeats classes 
according to the AAMI instructions, as shown in 
Table 2.

taken for the baseline-corrected signal to 
decompose it into various frequency bands. The 
Daubechies-6 (DB6) wavelet filter, four levels of  
decomposition, soft thresholding scheme (defined 
in Eq. (1)), and universal threshold determination 
strategy (given in Eq. (2)) are optimal for removing 
the WGN from the ECG signal.

( ) ( )( )sign

for ,  and 0 f ,or 
thresholding hr

hr hr

S De De De t

De t De t

= −

> ≤
 (1)
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D

=

=
 (2)

where SDN – is the Standard Deviation of  Noise.
The DB6 is characterized by the following 

features [35]:
• It has a very close shape to the ECG signal, 

which is essential for the ideal reconstruction.
• It is suitable for non-stationary signals due to its 

short vanishing moments.
• It has relatively low-cost computations due to its 

orthogonality.
Fig. 3 illustrates the shape of  the DB6 wavelet filter.
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2.1. ColleCtIng eCg sIgnals

The ECG signals were collected from MIT-BIH-
ARR-DB, which is available in [34]. It is well-
known and used by many researchers, and this 
facilitates the process of  comparing the suggested 
scheme with previous works. Table 1 describes 
these signals briefly.

Table 1
Description of the collected ECG signals

Parameter Value

No. Records 48

Duration (Minutes) 30

Sampling Frequency (Hz) 360

Leads Single (MLII)

No. Heartbeats 109,494

No. Heartbeats types 15

Gender of the Participants (%) 53% males, 47% females

Age Range (Years) 23-89

Table 2
Relabeling the MIT-BIH-ARR-DB according to the 

AAMI instructions

2.2. dIgItal sIgnal PreProCessIng

In practice, the ECG signals during their acquiring 
or transmitting are usually corrupted with two 
main types of  noises: Baseline Wanders (BW) and 
White Gaussian Noise (WGN) [35]. These noises 
must be reduced as possible to avoid their negative 
impact on the quality of  the signals and the 
classification performance. Fig. 2 demonstrates 
an example of  an ECG signal contaminated with 
BW and WGN.

To obtain baseline-corrected ECG signals, each 
signal passed through two Median Filters (the width 
of  the first is 200 ms, while the width of  the second 
is 600 ms). Next, it is subtracted from the raw ECG 
signal. After that, to eliminate the WGN, the DWT is

Fig. 2. An example of  ECG signal corrupted with BW 
and WGN.

Fig. 3. The shape of  the DB6 wavelet filter.
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2.3. r Peak deteCtIon

This research suggests a simple and efficient strategy 
for R peak detection by evaluating the angles in degrees 
between sequential samples of  the amplitude of  the 
signal followed by applying a dynamic threshold 
to these angles and a time window as described in 
equations (3), (4), (5), (6), and (7), respectively:
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where β is the magnification factor, δ(k) is the kth 
sample of  the amplitude.

Note that β in Eq. (4); is adjusted in a way that 
ensures detection of  low-amplitude beats. Fig. 4 
illustrates this concept; when sampling frequency 
= 360 Hz, it is clear that the range of  angles is 
maintained between 80° and 90°. The dynamic 
threshold value in degrees D(k) is varied according to 
Eq. (5) to tackle the variations of  the heartbeats due to 
different patient cases and recording circumstances. 
The values of  θ(k) and D(k) are compared, then the 
time window G(k) is used for R peak detection.
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where Υ1 and Υ2 are empirically set to 0.4° and 
0.00012°, sequentially to get the smallest detection 
error as illustrated in Appendix A.
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After the time interval of  G(k) is evaluated, a 
comparison between the |local maximum| and 
|local minimum| amplitude of  the signal within 
G(k) is conducted; the highest one is specified as the 
R peak point, as illustrated in Fig. 5. The strengths of  
the proposed strategy can be summarized as follows: 
Eq. (1) guarantees that the relationship between 
θ(k) and |δ(k) – δ(k – 1)| is nonlinear, and θ(k) is 
restricted for a fixed range (0° and 90°). In other 
words, θ(k) is immune to the different changes of  
the QRS complex. Moreover, the tan-1 term makes 
the computation of  θ(k) easy and fast.
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Fig. 4. Evaluating the angles of  the heartbeat based on 
trigonometry.

Fig. 5. A demonstrative example of  the suggested approach 
for detecting the R peaks. (1). Denoised signal, (2). Angles 
(black) and dynamic thresholding (blue), (3). Time window G 

(k), (4). Locating and tagging the R peaks.
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After performing the filtering process, and R 
peak detection, the segmentation process is carried 
out. Each ECG signal is segmented into several 
heartbeats based on R peaks locations. The heartbeat 
is defined by specifying 92 sampling points before 
the R peak and 146 sampling points after the R peak 
(i.e., the length of  each heartbeat is 238 samples).
2.4. PreParIng Heartbeats

The segmented heartbeats are divided (according 
to the inter-patient scheme [36]) into two groups: 
the training group, which results from filtering and 
segmenting the signals of  set 1, and the testing 
group, which results from filtering; and segmenting 
the signals of  set 2. There is no intersection between 
the two sets (they come from different patients). The 
recordings for set 1 and set 2 are shown in Table 3. 
According to AAMI standards [37], the four 
recordings that contain pace beats are eliminated.

• Higher-Order Statistics (HOS): They are 
functional in capturing the slight variations in 
ECG signals [39]. Each heartbeat was segmented 
into 5 intervals over each one; the third and 
fourth-order statistics (skewness and kurtosis) 
were determined to generate ten features. The 
range of  delay variables, which are centered on 
the R peak, is (–250 to 250) ms as described in 
[39].

• QRS Complex Durations and Their 
Normalizations: They include the following 
five durations and their normalizations (ten 
features): overall QRS duration (QRSo), the 
QRS duration at the middle value of  the R peak 
(QRSm), the QRS duration at the quarter value 
of  the R peak (QRSq), the duration between 
Q and S waves (dQS), the duration between P 
wave and the starting point of  the QRS complex 
(dPQRS). These features are demonstrated 
in Fig. 6. The normalization for the above 
features can be obtained by dividing the feature 
value by the mean of  its value in the last thirty-
two heartbeats. A comprehensive explanation 
for extraction mechanism is demonstrated in 
Appendix B.

• Euclidean Distances: These four features 
depend on Euclidean distances between the R 
peak and four points of  the beat that represent 
the amplitude values through several samples 
(as proposed in [37]): maximum amplitude 
(Beat [0, 40]), minimum amplitude (Beat [75, 
85]), minimum amplitude (Beat [95, 105]), and 
maximum amplitude (Beat [150, 180]).

ANAS FOUAD AHMED, HADEEL N. ABDULLAH, BARAA M.ALBAKER MEDICAL PHYSICS

Table 3
Signals of set 1 and set 2 with their associated 

recordings.

2.5. Features extraCtIon

A large number of  features were examined in this 
paper, and they represent the most notable eighty-
five features, most of  which were addressed in 
previous works [31,37-41], and they are as follows:
• The Coefficients of  DWT: The DWT has the 

ability to extract detailed information from both 
the frequency and temporal domains, making it 
ideal for ECG representation. In this study, the 
first-order Daubechies mother wavelet (DB1) 
with three decomposition levels was used to 
introduce twenty-three features.

• The Coefficients of  Hermite Basis Functions 
(HBF): The coefficients of  HBF were utilized 
as the features describing the pattern of  the 
ECG signal. The sample points situated 250 ms 
before and following each R peak represent the 
beat segment. The parameters for evaluating 
the coefficients of  HBF were described in [38]. 
The order of  HBF was fixed to twenty, and 
the width variable was estimated to reduce the 
reconstruction error (as possible) for each beat 
[37]. Three, four, and five HBFs were used to get 
fifteen features.

Fig. 6. Demonstration of  features of  the QRS complex 
durations and amplitude differences.
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• Amplitude Differences and Their 
Normalizations: They consist of  the following 
seven amplitudes and their normalizations 
(fourteen features): the difference in amplitude 
between R and Q waves (daRQ), the difference 
in amplitude between P and Q waves (daPQ), 
the differences in amplitude between R and S 
waves (daRS), and the peak values of  (S, R, P, 
and Q) waves. All these features are illustrated in 
Fig. 6. The normalization for the above features 
can be determined by dividing the feature value 
by the mean of  its value in the latter thirty-two 
heartbeats. A comprehensive explanation for 
the extraction mechanism is demonstrated in 
Appendix B.

• RR Intervals and Their Normalizations: They 
are the most utilized features for classification 
purposes. These features can be calculated from 
the time distance between consequent beats. If  
we denote RRp for the present RR interval, then 
RRp – 1 and RRp + 1 represent the pre RR and 
post RR intervals, respectively. The number of  
RR intervals considered in this paper is three. 
The following six features are the normalized 
RR intervals:
Normalized RRp = (RRp)/mean of  the latter 
thirty-two RR intervals
Normalized RRp – 1 = (RRp – 1)/mean of  the 
latter thirty-two RR intervals
Normalized RRp + 1 = (RRp + 1)/mean of  the 
latter thirty-two RR intervals
Normalized RRr1 = (RRp – 1)/RRp
Normalized RRr2 = (RRp + 1)/RRp
Normalized RRpt = [RRp – mean of  the latter 
thirty-two RR intervals]/ standard deviation of  
the latter thirty-two RR intervals.

2.6. Feature seleCtIon

To minimize the computational cost of  the introduced 
framework without sacrificing the performance 
of  the classifier, the number of  features for the 
training stage was adjusted to ten; this is consistent 
with the conclusions of  the specialists and previous 
work [27,41]. The MIR principle is used to select 
just the most significant features according to the 
class of  the heartbeats. From the perspective of  
selection features, MIR has been recognized to be 
an impressive strategy as it can identify non-linear 
relevance between features of  a given features-
vector or features-matrix. The scores of  MIR (or MI 

values) evaluated between the labels of  the classes 
and features indicate the discrimination ability of  
these features.
MI (feature, class label) = E (feature) – E (class label|feature)   (8)
where E (feature): is the entropy of  a feature; E (class 
label|feature): is the conditional entropy of  the class 
label given feature evaluating the uncertainty about 
the class label whenever the feature is known. In this 
research, the MI values are estimated based on work 
in [42] and [43] and using a python function called 
"mutual_info_classif.".
2.7. tHe ClassIFICatIon oF Heartbeats

In this study, the RF classifier is utilized for the 
heartbeats classification task. It is an ensemble of  
Z trees R1(I), R2(I), …, RZ(I), where I = i1, i2, …, 
ij is a j-dimension vector of  inputs and the obtained 
group generates Z outputs O1= R1(I), O2= R2(I), 
…, Oz = Rz(I). Oz is the value of  the prediction 
taken by tree number z. The final prediction O 
is determined by aggregating the output of  all 
random trees (majority voting). The RF produces Z 
number of  DTs from L-trained samples. The new 
training group is produced by conducting bootstrap 
sampling for all trees in the forest individually. This 
group is utilized to develop DT without trimming. 
In each division of  a DT node, just little numbers 
of  j features are chosen randomly rather than all of  
them. In order to construct a randomly produced 
forest, this procedure iterated to generate J of  the 
DTs.

The following is a brief  description of  the 
training process for a randomly created forest:

Stage One: From the training group, choose an 
arbitrary sample.

Stage Two: For every arbitrary sample, create 
a tree with the following alteration: at every node, 
choose the optimal division among an arbitrary 
chosen subgroup of  input parameters, which is 
the RF's tuning parameter. The tree is completely 
created until no more divisions are potential and not 
trimmed.

Stage Three: Reiterate stages one and two until 
Z such trees are created.

The RF classifier was constructed by utilizing the 
Scikit-learn library of  Python [44]. All the variables 
remained at their default configuration, except the 
number of  trees. To discover the best number of  
trees, the training was performed with an increased 
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number of  trees by utilizing the optimal ten features, 
and the ACC achievement was examined. Fig. 7 
depicts the results of  applying the LOOCV on the 
training set. It is clear that when the number of  trees 
exceeds forty, the accuracy of  the classifiers does not 
improve and may even deteriorate.
2.8. ClassIFICatIon assessment metrICs

The measurement for the classification performance 
and comparison with state of  the art was conducted 
by determining the following metrics: Overall 
Accuracy (ACCo), F1-score, Positive Predictivity 
(PPr), and Sensitivity (Sen).

2 PPr SenF1 Score
PPr Sen
⋅ ⋅

− =
+

 (8)

TPPPr
TP FP

=
+

 (9)

TPSen
TP FN

=
+

 (10)

TP TNACCo
TP TN FP FN

+
=

+ + +
 (11)

where TP – True Positive, TN – True Negative, FP – 
False Positive, and FN – False Negative.

3. RESULTS AND DISCUSSION
This paper performs an investigation into the 
exploitation of  the RF classifier for ECG signal 
classification by employing the optimal choice for the 
extracted Time-Domain (TD) features and obeying 
the AAMI standards and the inter-patient approach. 
Various eighty-five features were examined in this 
research. All the features suggested in [37], which are 
considered important research work in this direction, 
were implemented. Furthermore, most of  the 
features offered or based on [41] and [38] were used. 
In this study, normalization was accomplished by 
dividing the features by the mean of  the most recent 
heartbeats. This process can be conducted more 

practically in real-time medical wearable and portable 
monitoring devices. Further normalizations for the 
RRp – 1 and RRp + 1 were performed by dividing 
them by the RRp interval; this was presented as an 
effort to comprise the timing relevance between the 
sequential R peaks, which is also addressed in [45]. 
The normalized RRpt was calculated to implicate a 
quantitative measure of  the standard deviations for 
a specific interval from the mean. Table 4 illustrates 
the most significant ten features evaluated by the 
MIR principle. Because the high proportion of  the 
above normalizations is presented in the table of  the 
most significant features (as indicated in Table 4), 
our findings reveal that the normalized RR intervals 
provide further information and are more effective 
for classifying ECG signals than other classical RR 
intervals. Just the best ten with the highest significant 
features were utilized in the tests. The results exhibit 
that only six features are adequate to attain the 
optimum outcomes (ACCo = 96.26%), as illustrated 
in Fig. 8, this is consistent with the obtained results 
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Fig. 7. Accuracy vs. the number of  trees attained from 
LOOCV on the training set for the RF classifiers.

Table 4
The most significant ten features resulting from MIR 

with their MI values
Position  According

to MIR
Feature Name MI Value

1 Normalized QRSm 0.19037819

2 Normalized QRSq 0.17508354

3 Normalized RRp 0.16311836

4 Normalized RRr2 0.14615831

5 QRSm 0.14439339

6 First fitting coefficient of the fourth 
degree of HBF (HBFC1D4)

0.14157413

7 HBFC2D4 0.14001679

8 QRSq 0.13641600

9 HBFC0D4 0.13299729

10 Normalized RRr1 0.13147040

Fig. 8. Overall accuracy (ACCo%) vs. the number of  
features for the RF classifier.
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in [38], which show the number of  most distinctive 
features in a subset is typically few and eliminating 
the less significant ones can effectively boost the 
classifier's performance.

Besides the normalized RR intervals features, the 
largest number of  the ten most significant features 
is concerned with the duration of  the QRS complex 
computed at specific magnitudes. This indicates that 
those particular features are more robust identifiers 
of  the QRS shape than fiducial points that are 
characterized by small-amplitude variations, which 
are often disturbed by baseline noise. Tables 5 and  6 
demonstrate the performance of  the proposed 
framework in terms of  the confusion matrix and 
various assessment metrics, respectively. Since the 

wrong classification of  QB and FB is not taken into 
consideration, according to the AAMI guidelines, 
therefore, they are not regarded in this study (as the 
most prior works), but they are still involved in the 
assessment. It is noteworthy that the F1-Score gives 
a more reliable indication for the performance of  the 
classifiers, especially when the data are unbalanced. 
In the context of  a comparison with previous 
works, the proposed framework is distinguished 
from approaches in previous researches by being 
comprehensive and fully automated. In contrast to 
the previous methods, which did not automatically 
detect the locations of  the R peaks (they work only 
if  these locations are pre-defined in the database), 
the proposed framework presented a new, simple, 
and efficient method to detect these locations based 
on trigonometry. Table 7 compares the results 
achieved with the testing set of  this paper with 

A ROBUST AND EFFICIENT SCHEME FOR ECG SIGNAL CLASSIFICATION BASED 
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Table 5
Performance of the proposed method in terms of the 

confusion matrix using testing set
Prediction

NB SVEB VEB

NB 43494 653 69

SVEB 367 1447 23

True VEB 377 15 2818

FB 269 2 67

QB 3 1 5

Table 6
Performance of the suggested approach in terms of 
Sen, PPr, F1-Score, and ACCo using the testing set

Sen PPr F1-Score ACCo
NB 98.04% 97.71% 98.04%

SVEB 78.77% 68.32% 73.17% 98.26%
VEB 87.78% 94.50% 91.02%

Table 7
A comparison of the performance of the suggested framework with state-of-the-art methods
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several methodologies presented in the literature 
that attained a very good ECG signal classification 
performance and used the AAMI advice and the 
inter-patient concept. It has been shown that the 
overall accuracy obtained in this paper is one 
of  the best achieved using the same assessment 
indicators (ACC = 96.26%), outperforms the 
performance accomplished in [46] (ACCo = 
96.15%), which is, according to our research, the 
highest in the previous works. The researchers in 
[46] utilized the Gaussian Mixture (GM) approach 
(which is computationally expensive) to obtain 
various features, and they used the Bagging Tree 
technique for classification purposes. The RF 
classification scheme can give better results than 
Bagging Tree because RF provides a minimum 
correlation between trees; this was also highlighted 
in [47]. The suggested method in [46] used one 
hundred trees to obtain their results, while the 
results introduced in this paper use forty trees 
only. Moreover, the proposed method is more 
general and practical in the real world because 
it deals with the problem of  WGN that can 
negatively affect the classification results. This 
problem is neglected in [46] and in most previous 
methods. The best detection results for SVEB 
were achieved in [46]; however, the suggested 
framework outperformed in terms of  detection 
of  VEB. The presented framework ranked second 
in the detection of  VEB (F1-score = 91.02%) 
after the first rank which, was achieved in [51] 
(F1-score = 94.47%). Nevertheless, our model is 
more efficient in terms of  complexity, simplicity, 
and fit for wearable and portable devices than the 
one offered in [51], which is based on DNN. The 
detection of  VEB is especially important because 
its recurrence can be utilized as a predictor of  the 
most dangerous disease, "Heart Failure," which 
often leads to death [14,15].

4.  CONCLUSION
In this research, a comprehensive, robust, efficient, 
and fully automated framework for ECG signal 
classification based on digital signal processing, 
feature engineering selection, and RF classifier 
was suggested. Optimal incorporation between 
features engineering and the RF classifier was 
introduced to meet the heartbeat classification 
task for devices with limited resources. The ECG 

signal classification performance was reasonably 
calculated by obeying the AAMI advice and the 
inter-patient approach. The most significant 
features for the ECG classification problem were 
the normalized features associated with the RR 
intervals and durations of  the QRS complex 
computed at specific magnitudes. The optimal 
outcomes were attained with the best six most 
significant features and forty decision trees of  
the RF classifier. The assessment was based on 
MIT-BIH-ARR-DB. By comparing the proposed 
scheme in this paper with the reported literature, 
it can be noted that our findings are one of  the 
best performances achieved to present. The 
outcomes not only asserted that the RF classifier 
is a superior approach for classifying the ECG 
signals, but also, comparatively, few numbers 
of  features and trees are adequate to achieve or 
outperform literature performance.

Appendix A
Tuning Y1 and Y2 to obtain the smallest 

detection error

ANAS FOUAD AHMED, HADEEL N. ABDULLAH, BARAA M.ALBAKER MEDICAL PHYSICS

Y2

Y1 0.00006 0.00008 0.00018 0.00012 0.00014

0.2 0.350 0.281 0.262 0.251 0.624

0.3 0.235 0.218 0.216 0.207 0.218

0.4 0.198 0.191 0.190 0.185 0.193

0.5 0.198 0.196 0.195 0.193 0.200

0.6 0.200 0.195 0.208 0.203 0.220

Appendix B
Extracting the key points of  ECG signal

The highest absolute amplitude of  the signal in 
the period 100 ms prior to and following the R 
peak is assigned as a reference base point. The 
following procedures have been conducted for 
obtaining the ECG key points: (note the R peaks 
are detected and extracted as explained in section 
2.3)
1 Initially, suppose that the peaks of  P, Q, and S 
= 0 (no associated waves exist).
2. Go back before QRSmp and determine the 
transition points as follows:

i. Set [QRSmp/2p] = the first position at 
which the signal value is under QRSmp/2.
ii. Set [QRSmp/4p] = the first position at 
which the signal value is under QRSmp/4.
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iii. Set Qpeak = amplitude of  the first 
negative transition point.
iv. If  the first transition point trp ≥ 0, then 
specify this point as QRSb, set Speak = 
QRSmp, and Qpeak = 0.
v. If  QRSmp > 0, and the second trp < 0, and 
Qpeak = 0, then specify the amplitude of  this 
point as Qpeak.
vi. If  Qpeak ≠ 0, and the signal passes through 
0, then set QRSb = the first point that is ≥ 0.
vii. If  the second trp ≥ 0, and QRSb has still 
not been determined, then specify this point 
as QRSb.

3. Go ahead after QRSmp and determine the 
transition points as follows:

i. Set [QRSmp/2n] = the first position at 
which the signal value is under QRSmp/2.
ii. Set [QRSmp/4n] = the first position at 
which the signal value is under QRSmp/4.
iii. Set Speak = amplitude of  the first trp, that 
is < 0.
iv. If  Speak ≠ 0, and the signal passes through 
0, then set QRSe = the first point that is ≥ 0.
v. If  the second trp ≥ 0 and QRSe has still 
not been determined, then specify this point 
as QRSe.

4. Evaluate the maximum amplitude of  the signal 
in the period between 236 ms and 70 ms prior to 
QRSb (MApriQRSb[236,70]). If  this amplitude is 
> 3·STD of  the signal through the period of  70 
ms before the period under consideration and its 
location matches the trp of  the signal, then set 
Ppeak = MApriQRSb[236,70].

Note: QRSb: beginning of  the QRS, QRSe: 
ending of  the QRS, STD: Standard Deviation.
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