
453

RENSIT | 2023 | Vol. 15 | No. 4

Contents

1.	 Introduction (454)
2.	 Related work (455)
3.	 Research approaches (456)

3.1. Approaches to the
development of graphics

controller drivers on the example
of Linux OS (456)
3.2. Methods used to study DTLC
drivers (457)
3.3. Differences in the DTLC
driver architecture for
interacting with the flat panel
display (457)

INFORMATION TECHNOLOGIES

DOI: 10.17725/rensit.2023.15.453

Flat Panel Display Controller Driver Architecture for Linux OS
Konstantin V. Pugin, Kirill Mamrosenko, Alexander Giatsintov
Scientific Research Institute of System Analysis of RAS, https://niisi.ru/
Moscow 117218, Russian Federation
E-mail: rilian@niisi.ras.ru, mamrosenko_k@niisi.ras.ru, algts@niisi.ras.ru
Received May 25, 2023, peer-reviewed June 01, 2023, accepted June 08, 2023, published December 06, 2023.
Abstract: This paper discusses the development of a driver architecture for display transmitter
link controller. The architecture ensures the implementation of protocols for interaction with
flat panel displays in the case when the controller has its own registers and configuration
system. Unlike the known solutions, the proposed architecture makes it possible to reduce
the amount of changes in the implementation code in the event of hardware upgrade,
and also does not require the use of automatic driver code generation based on high-level
descriptions or the development of special tools, such as domain-specific languages. This
paper analyses drivers that are based on Direct Rendering Management subsystem and
available in open source, as well as previously described approaches to the development
of display transmitter link controller drivers. The paper also presents a logical comparator
model for testing phase-locked loop devices, which are an integral part of all display output
stacks. Based on this model, an IP block was developed, which was used to test the Display
Serial Interface driver. Evaluation of the results was carried out in the development of
the MIPI Display Serial Interface driver for a promising controller. This driver was tested
together with a device prototype and a panel that supports the MIPI Display Serial Interface
1.3 standard. The results provided in this paper can be used both to develop new drivers for
existing controllers and new controllers with new drivers.
Keywords: driver, architecture, MIPI DSI, embedded systems
UDC 004.454
Acknowledgments: The work was carried out within the framework of the state task of the Federal
State Institution FNTs NIISI RAS "Conducting fundamental scientific research (47 GP)" on topic
No. FNEF-2022-0022 "Mathematical support and tools for modeling, designing and developing
elements of complex technical systems, software systems and telecommunication networks in
various problem-oriented areas".
For citation: Konstantin V. Pugin, Kirill A. Mamrosenko, Alexander M. Giatsintov. Flat Panel Display
Controller Driver Architecture for Linux OS. RENSIT: Radioelectronics. Nanosystems. Information
Technologies, 2023, 15(4):453-462e. DOI: 10.17725/rensit.2023.15.453.

454

No. 4 | Vol. 15 | 2023 | RENSIT

4.	 Analysis of the MIPI Display
Serial Interface protocol (457)
4.1. Peculiarities of working with
MIPI DSI displays (458)

5.	 Comparator-based logic model for
testing PLL drivers (459)

6. Conclusion (460)
References (460)

1. INTRODUCTION
Currently, graphic display units for mobile
devices are developing at a high pace. Many
new display devices are characterized by
resolutions up to 2560x1600 and dynamic
refresh rates from 60 to 120 Hz. In this
regard, it becomes relevant to use new
standards in developing display interface
controllers that can stream video at high
speed. To solve this problem, there are
several existing protocols that require
using separate devices, so called display
transmitter link controllers (here and
afterwards referred to as DTLC), which
complement the display controller by
converting the output in the form required
by the display. Many protocols that transmit
video at high speed (1 Gbit/s and higher)
require both to interact dynamically
and agree on acceptable transmission
parameters. Controllers for such protocols
require complex program control that is
specific for every type of device. Protocols
for flat panel displays that transfer smaller
amounts of data often do not require
such complex control and feedback. If
these protocols are used, flat panel display
configuration does not change when
display is up and running, and dynamic
configuration is not supported. Like [1],
let’s call complex DTLC a DTLC that
require program control with feedback. As

the number of mobile devices with displays
that require new ways of interacting and
new controllers increases, it is necessary
to have approaches at hand to develop
drivers for such (complex) devices [2].
If the DTLC driver for interacting with
flat panel displays is developed in parallel
with the device, then several problems are
encountered, some of which are identical
to those described in [1], and some are
unique, related to the essence of these
protocols:
1.	 There is a need to compute compatible

frequencies for the FPGA and select
flat panels that will be used during the
design of a controller.

2.	 Possible incompatibility of allowed
frequencies of panels and controllers,
to bypass which additional hardware
and software is required.

3.	 The need to test several frequencies
and panel operation modes with no
possibility to replace device hardware.

4.	 The need to bypass OS interfaces
if they are not compatible with the
protocol version that is implemented
in hardware.
To address these problems, different

hardware and software-based approaches
are used: use of verifiers [3], creation of
the Domain Specific Languages (DSLs)
[4], automatic generation of driver code
based on the common pattern [5], and
development of drivers that define the
unchangeable main features of a series of
devices until the end of its production,
while other features are parametristic and
dynamically fetched from configuration file
entries. This paper is an attempt to answer
what approaches to the development of
the DTLC driver for interacting with flat

INFORMATION TECHNOLOGIESKONSTANTIN V. PUGIN, KIRILL A.
MAMROSENKO, ALEXANDER M. GIATSINTOV

455

RENSIT | 2023 | Vol. 15 | No. 4

panel displays should be applied, given the
proposed conditions. The contribution of
the study is as follows:
•	 This paper improves the DTLC driver

architecture created earlier by ([1]) for
cases where DTLC is used to interact
with the flat panel display.

•	 To test the correctness of programming
an interface of phase-locked loop
driver (afterwards referred to as PLL),
at the early stages of the development
of the IP block, the logical comparator
model was created and implemented on
FPGA, which is used in conjunction
with built-in PLLs. This model made
it possible to test the correctness of
programming of phase-locked loop
devices for DTLC in FPGA states
similar to the real device application
case.
The developed architecture ensures

the implementation of protocols for
interaction with flat panel displays in
the case when the controller has its
own registers and configuration system.
Unlike the known solutions, the proposed
architecture makes it possible to reduce the
amount of changes in the implementation
code in the event of hardware upgrade, and
also does not require the use of automatic
driver code generation based on high-level
descriptions or the development of special
tools, such as domain-specific languages.

Section 3.1 describes approaches to
developing drivers for Linux OS, on the
basis of which the study was carried out.
Section 3.3 describes the architecture of the
DTLC driver for flat panel displays, which
contains two loosely bound components
– a hard-ware binding component and
an OS interaction component, which are

linked by an internal API. The hardware
binding component performs most of
the necessary conversions of incoming
data into those formats that are required
for programming of a particular device,
programs its registers and ensures
feedback. The OS interaction component
converts requests from other parts of the
system and transmits them with an internal
API, which is a system of functions and
structures common to all hardware binding
modules. Section 4 describes how to use
the above mentioned architecture when
developing a driver for the MIPI Display
Serial Interface (MIPI DSI), which is one
of the DTLC protocols for interacting
with flat panel displays. Section 5 describes
the logical model of the comparator
for testing the driver using FPGA PLL
generator. This model allows testing the
correctness of programming the real
hardware PLL drivers when it is necessary
by using emulation of real hardware PLL
interface in FPGA instruments.

2. RELATED WORK
Some recent papers [6] offer to create
systems with several DTLCs for
interacting with the flat panel display that
have a common physical interface layer
(afterwards referred to as PHY), which can
be used by only one DTLC at a time. One
may try to get round this limitation using
the DTLC driver architecture described
in [7]. In this architecture frequency
synthsizer in the shared device, but in the
architecture, described in [6], PHY will
be the shared device in this architecture
and not the frequency synthesiser. Or it
is possible to preserve the limitation on
simultaneous operations but separate out
the frequency synthesiser (FS) together

INFORMATION TECHNOLOGIES
FLAT PANEL DISPLAY CONTROLLER

DRIVER ARCHITECTURE FOR LINUX OS

456

No. 4 | Vol. 15 | 2023 | RENSIT

with PHY into an independent module
with a common part of the driver. Since
PHY described in [6] is used in DTLC
to interact with the flat panel display, the
driver architecture described in this paper
can also be used for controllers with such
a PHY (taking into account the paper by
[7]).

The article [8] describes approaches
to designing DTLC drivers for real-time
operating systems. The description of the
RTOS subsystem provided in this article
allows applying the models for driver
development like those used for DRM
in Linux with minimal modification in
terms of component names replacement.
This allows developing DRM-compatible
models for DTLC drivers to interact
with the flat panel display not only for
Linux but also for other OS, which is also
reported in [9]. This paper cites that DRM
is also used for writing graphics drivers
for FreeBSD OS. So it is possible to use
the models developed for DRM to write
DTLC drivers in these OS.

3. RESEARCH APPROACHES
3.1 Approaches to the development of
graphics controller drivers on the
example of Linux OS
Several approaches to the use of certain
popular graphics subsystem tools used
in the development of DTLC drivers for
Linux are known. The most popular of
them are the following:
1.	 DRM. As mentioned in [10], the DTLC

interface is part of the Direct Rendering
Management (DRM) framework. If
to consider the DRM subsystem as
a software model of the real output
device, then all flat panel displays and

interfaces for their interaction with
DTLC match the panel type because
they determine how graphics output
works with fixed frequencies. However,
the panel type implementation requires
that each type of panel has its own
driver, even if the controllers match.
Therefore, most often DTLC drivers
for fixed panels are implemented as a
bridge + panel bundle, or, less often as
encoder + panel bundle. The second
option, in contrast to the first one, does
not correlate with the external model,
although it is practically possible [11].

2.	 User Mode Setting (UMS) or the
implementation of setting modes
and interacting with hardware inside
the X server. Problems with the
implementation and the use of UMS
were reported in 2006 [12], whereafter
no drivers for DTLC were developed
using this approach.

3.	 FrameBuffer device (fbdev). This
kernel interface preceded the KMS
DRM module and was most common
until 2008-2009, when the first version
of KMS was adopted. The fbdev
interface did not provide for the
implementation of mode configuration
in the kernel, and, therefore, required
the implementation of UMS, which
led to the above problems. No drivers,
specifically for DTLC devices, were
developed using this approach after the
appearance of KMS.

4.	 There are driver implementations for
the Android Display Framework (ADF).
However, they are standard, hardware-
independent, protocol functions must
be developed from scratch in each
driver, which increases the likelihood

INFORMATION TECHNOLOGIESKONSTANTIN V. PUGIN, KIRILL A.
MAMROSENKO, ALEXANDER M. GIATSINTOV

457

RENSIT | 2023 | Vol. 15 | No. 4

of errors and increases the complexity
of the task. Also, due to the use of the
ADF architecture (the development
of fbdev), it becomes necessary to
combine DTLC drivers and display
controller drivers. Implementations of
controller drivers in a number of other
Unix-compatible systems (for example,
FreeBSD) are also created with DRM
([9]), as the most advanced open system
for implementing complex output tools.

3.2 Methods used to study DTLC
drivers

When preparing the paper, the authors
analysed the existing open DTLC drivers
for Linux OS. The special emphasis was
placed on drivers for mobile platforms.
Based on this analysis, the novel Display
Serial Interface (DSI) driver architecture
was developed. It allows quickly creating
the driver for a device prototype and, after
hardware release, port this driver to a serial
device. Through previous analysis and
case study, and using materials from [1],
the proposed architecture has been further
extended to all complex DTLC drivers to
interact with flat panel displays.
3.3 Differences in the DTLC driver
architecture for interacting with
the flat panel display

For DTLC with a dynamic panel, the
architecture offered by [1], Fig. 1, is
currently the most applicable one. To
adapt this architecture for use in flat panel
display systems, the drm_panel structure
must be used, which will only work with
DRM model interfaces, and the panel
driver must be fully compatible with the
DRM model. The improved architecture is
shown in Fig. 2. In this version, the drive
rarchitecture also retains all the advantages

described in [1], while being able to work
with flat panel displays in cases where
the feedback implementation in the panel
complies with the relevant protocol clauses.
However, this architecture needs to be
improved in cases where non-standard
extensions are required to interact with
the panel interface.

4. ANALYSIS OF THE MIPI
DISPLAY SERIAL INTERFACE
PROTOCOL
Along with eDP (embedded DisplayPort,
the development of drivers for which
was described in [1]), MIPI DSI, used
by leading Android mobile device
manufacturers, is one of the most
used protocols for transmitting data

INFORMATION TECHNOLOGIES

Fig. 1. DTLC driver architecture for implementation within
the DRM subsystem.

Fig. 2. DTLC driver architecture for interacting with flat
panel displays for implementation within the DRM subsystem.

FLAT PANEL DISPLAY CONTROLLER
DRIVER ARCHITECTURE FOR LINUX OS

458

No. 4 | Vol. 15 | 2023 | RENSIT

to displays. The important part of this
protocol is a feedback protocol that
is implemented through the Display
Command Set (DCS), which defines
the format of commands and responses
of interaction participants, as well as a
list of standard commands that must
be supported by all compatible devices.
To implement the MIPI DSI protocol,
DRM uses drm_encoder (to implement
the controller driver), drm_panel (to
implement the panel driver), and drm_
connector or drm_bridge (to implement
panel interaction with the controller)
[11].

There is a program model in the Linux
kernel for DRM-based MIPI DSI drivers
that complements the general DRM
model as follows: MIPI DSI, like similar
eDP standard implements not only the
basic image output, but also additional
functions (for example, the transfer of
various data via the DCS protocol). To
implement these functions from the MIPI
DSI controller side, the DRM has a MIPI
DSI Host object (mipi_dsi_host), and
to implement these functions from the
panel side, there is the MIPI DSI Device
object (mipi_dsi_device), as well as several

auxiliary functions only for MIPI DSI
controllers and panels. MIPI DSI DRM
model is shown on Fig. 3.
4.1 Peculiarities of working with
MIPI DSI displays

The vast majority of PHY for MIPI DSI
(afterwards referred to as D-PHY) [13]
either use burst mode or require certain
constants for the MIPI DSI protocol to
be taken into account. This leads to the
fact that, unlike other DTLC, in MIPI DSI
it is necessary to recalculate the time and
frequency characteristics for all the modes.
Also, unlike the DisplayPort protocol,
the data transfer frequency in DSI is not
constant but is derived from the pixel
frequency using the formula
 clkhs = clkpix∙BPP∙lanes,
where lanes is the number of active
transmission lines (from 1 to 4), BPP is
the number of bits per pixel, and clkpix
is pixel clock. It is the bit frequency
that must be transmitted to the PLL
of the DSI controller [14]. The DSI
protocol uses the Display Monitor
Timings (DMT, see [15]) definition of
screen resolution. However, unlike other
protocols, DSI needs to recalculate all
the characteristics of horizontal lines in
order for the invisible part of the screen
to fit the packet headers. Let us denote the
horizontal characteristics as: HBP – Front
Porch, HFP – Back Porch, HSA – Hsync
Active, HACT – H Active, PULSE_CLK
– pulse synchronisation value, – число
битов в пикселе. number of bits in a
pixel. For each characteristic (denoted as
X) let’s XDPI be input characteristic of
X, XDSI be recalculated characteristic of
X. Protocol constants, such as HDR = 6
(packet header, one per each timing, must

INFORMATION TECHNOLOGIES

Fig. 3. MIPI DSI program model within the common
DRM model.

KONSTANTIN V. PUGIN, KIRILL A.
MAMROSENKO, ALEXANDER M. GIATSINTOV

459

RENSIT | 2023 | Vol. 15 | No. 4

be in the invisible area), HSS = 4 horizontal
synchronisation start header), HSE = 4
(horizontal synchronisation end header),
are also important for recalculation. The
following formulas are used to recalculate
timings:
HBPDSI = (HBPDPI∙BPP/8) – HDRHBP

HFPDSI = (HFPDPI∙BPP/8) – HDRHACT – HDRHFP

HSADSI = (HSADPI∙BPP/8) – HSS – HDRHSA – HSE
HACTDSI = HACTDPI∙BPP/8
PULSE_CLK = ((HACTDPI + HSADPI +
HBPDPI + HFPDSI)∙BPP/8) – HSADSI – 20.

Calculations in accordance with the
above formulas must always deliver
integers. If the figure turns out to be
non-integer, then the driver must choose
an alternative. Since there is no resources
for this in the common DRM stack, this
should be redirected to the controller
driver. Different controller models may
have different additional restrictions,
such as the inability to select certain
bit rates or the need to select specific
vertical timings. To be able to determine
additional restrictions on controller values,
a module originally proposed in [1] for
hardware interaction is used. However,
an improvement is required for use with
the fixed panel (2). It is also possible to
reduce Vertical Front Porch (VFP, see
[15]) to reduce power consumption with
high-speed operation, which is performed
depending on the model of the controller
and panel. Therefore, work on reducing
VFP is done in the hardware module
interactions. To test the correctness of
programming the transmission frequency
generator, a testing comparator (5) was
used, which made it possible to avoid
PLL programming errors when testing the
DTLC driver for the MIPI DSI controller.

5. COMPARATOR-BASED LOGIC
MODEL FOR TESTING PLL
DRIVERS
For most DTLC, the driver needs to correctly
program PLL frequencies directly related
to the image output. On some controllers,
the PLL data programming interface
can be built directly into the controller’s
program interface and performed in the
same way as all other setup operations.
Despite the development of phase-locked
loop devices with reduced size [16], FPGA
and emulators often lack the ability to
dynamically tune PLL, which makes it very
difficult to test DTLC controllers with
changing the connected monitor without
powering off the controller, for example,
DisplayPort or HDMI. Each frequency
value required project rewiring for FPGA.
For DTLC with fixed panels, this problem
is less relevant, since panels support a small
frequency range and, thereore, a small
number of supported display modes. Such
systems have another problem with FPGA
drivers. Often, the programmable value of
the PLL drivers is not taken into account
by FPGA, which allows FPGA-based
controller prototypes to display an image
with incorrectly programmed PLL. In this
case, the fact of incorrect programming
would manifest on production devices.
To solve this problem, it was proposed to
develop a testing block for FPGA-based
implementation, the logical model of
which consists of the following elements
(Fig. 4):

INFORMATION TECHNOLOGIES

Fig. 4 . Comparator-based PLL mock-up model.

FLAT PANEL DISPLAY CONTROLLER
DRIVER ARCHITECTURE FOR LINUX OS

460

No. 4 | Vol. 15 | 2023 | RENSIT

•	 Input that receives the frequency
specified during FPGA wiring.

•	 Calculation block that converts the
input to a frequency value (rounded to
the nearest whole number). The exact
structure of the calculation block is
determined by the PLL programming
interface or the part of the controller
programming interface that programs
PLL.

•	 Comparator that compares the
calculation block output with the
frequency specified during FPGA
wiring. If the comparison result is
positive, the comparator sends the
enabling signal to the frequency skip
switch. The allowed deviation of the
estimated frequency from the incoming
one depends on the device under
development (it often does not exceed
1 kHz for DTLC).

•	 Frequency skip switch, which is turned
on by the enabling signal from the
comparator.
This model was implemented as an IP

block on FPGA. The use of this model
to test DTLC drivers for interaction with
the flat panel display made it possible to
achieve correct PLL programming for
the DTLC controller even before the first
prototype was made. The correctness
of programming has been confirmed
already at the testing stage with the use of
emulators and FPGA.

6. CONCLUSION
The approaches proposed in this paper
make it possible to reduce the amount
of changes in the implementation code
in case of hardware upgrade. Also, these
approaches make it possible to reduce the

number of driver modifications to support
device families (including for one device
with differences in various blocks, for
example, different PLL). The PLL model
described above, when implemented, will
allow testing drivers at the early stages of
PLL development, as well as device drivers
that use PLL.

Further developments may deal with
determining the applicability of the
resulting architecture to the development
of DTLC drivers for embedded systems
with external buses (for example, using
DTLC on PCI Express), researching
specific DTLC protocols (over HDMI),
and also determining the possibilities of
using the comparator to test PLL drivers,
used in other SoC parts.

REFERENCES
1.	 Pugin KV, Mamrosenko KA,

Reshetnikov VN. Display Transmitter
Link Controller Design Technology
for Linux OS. Software Journal:Theory
and Applications, 2019, 4:10-17, doi:
10.15827/2311-6749.33.406.

2.	 Jonathan Corbet, Alessandro Rubini,
Greg Kroah-Hartman. Linux Device
Drivers. O'Reilly Media, Inc., 2005.
ISBN: 0-596-00590-3.

3.	 Dileep KP, Raghavendra A, Suman
M, Devesh G, Srikanth SV. Rules
Based Automatic Linux Device Driver
Verifier and Code Assistance. Proc.
IEEE International Conference on Recent
Advances and Innovations in Engineering.
Jaipur, India: IEEE, 2014. ISBN:
978-1-4799-4040-0.

4.	 Lisboa EB, Silva L, Lima T, Chaves I,
Barros E. An Approach to Concurrent
Development of Device Drivers

INFORMATION TECHNOLOGIESKONSTANTIN V. PUGIN, KIRILL A.
MAMROSENKO, ALEXANDER M. GIATSINTOV

461

RENSIT | 2023 | Vol. 15 | No. 4

and Device Controller. Proc. 11th
International Conference on Advanced
Communication Technology, pp. 571-575.
Phoenix Park: IEEE, 2009. ISBN:
978-89-5519-139-4.

5.	 Jung Choon Park, Yong Hoon Choi,
Tae Ho Kim. Domain Specific Code
Generation For Linux Device Driver.
Proc. 10th International Conference
Advanced Communication Technology,
pp. 101-104. Gangwon-Do, Korea
(South): IEEE, Feb, 2008. ISBN:
978-89-5519-136-3. DOI: 10.1109/
ICACT.2008.4493721.12.

6.	 Sunil Kumar CR, Aruna Kumar, Sanjib
Basu. Novel Circuit Architecture for
Configurable eDP and MIPI DPHY
IO. Proc. 2022 35th International
Conference on VLSI Design and 2022
21st International Conference on Embedded
Systems (VLSID), pp. 98-101. Bangalore,
India: IEEE, 2022. DOI: 10.1109/
VLSID2022.2022.00030.

7.	 Konstantin V. Pugin, Kirill A.
Mamrosenko, Alexander M. Giatsintov.
Software Architecture for Display
Controller and Operating System
Interaction. RENSIT: Radioelektronika.
Nanosistemy. Informacionnye Tehnologii,
2021, 13(1):87-94. DOI: 10.17725/
rensit.2021.13.087.

8 . 	 Bazhenov PS, Giats intov AM,
Mamrosenko KA. Approaches to
providing data v isual izat ion on
devices us ing modern rea l t ime
operat ing systems. Sof twar e &
Sys t ems, 2021, 3 :433-439. DOI:
1 0 . 1 5 8 2 7 / 0 2 3 6 - 2 3 5 X . 1 3 5 . 4 3 3 -
439.

9.	 Emmanuel Vadot. Adventure in
DRMland Or How to Write a

FreeBSD ARM64 DRM Driver.
Proceedings AsiaBSDCon, 2019, pp.
9-13, (AsiaBSDCon. Tokyo, Japan:
BSD Research, 2019). DOI: 10.25263/
asiabsdcon2019/p01a.

10.	Konstantin V. Pugin, Kirill A.
Mamrosenko, Alexander M. Giatsintov.
Visualization of Graphic Information
in General-Purpose Operating
Systems. RENSIT: Radioelektronika.
Nanosistemy. Informacionnye Tehnologii,
2019, 11(2):217-224e. DOI: 10.17725/
rensit.2019.11.217.

11.	Linux GPU Driver Developer’s Guide.
2019. URL: https://dri.freedesktop.
o r g / d o c s / d r m / g p u / i n d e x . h t m l
(Access mode: 06.03.2019).

12.	Verhaegen Luc. X and Modesetting:
Atrophy Illustrated. 2006. URL: https://
people.freedesktop.org/~libv/X_and_
Modesetting_–_Atrophy_illustrated_
(paper).pdf.

13.	Kiyong Kwon, Dongwon Kang, Geon-
Woo Ko, Seok-Young Kim, Seon-
WookKim. Low-Cost Unified Pixel
Converter from the MIPI DSI Packets
intoArbitrary Pixel Sizes. Electronics,
2022, 11(8):1221. DOI:10.3390/
electronics11081221.

14.	 Yeming Liu, Chengyue He. A
Design of MIPI DSI Interface
for LCD Display Driver. Journal
of Physics: Conference Series,
2022, 2221(1):012015. DOI:
10.1088/1742-6596/2221/1/012015.

15.	VESA and Industry Standards and
Guidelines for Computer Display
Monitor Timing (DMT), Version 1.0,
Rev. 13. 39899 Video Electronics Standards
Association, 2013, 105 p.

INFORMATION TECHNOLOGIES FLAT PANEL DISPLAY CONTROLLER
DRIVER ARCHITECTURE FOR LINUX OS

462

No. 4 | Vol. 15 | 2023 | RENSIT

16.	Hye-Hyun Lee, Yeon-Seob Song,
Kang-Yoon Lee. Modeling of Nano-
Scale PLL Using Verilog HDL.
Proc. 13th International Conference
on Information and Communication
Technology Convergence (ICTC). IEEE,
2022, pp. 2101-2104. DOI: 10.1109/
ICTC55196.2022.9952654.

INFORMATION TECHNOLOGIESKONSTANTIN V. PUGIN, KIRILL A.
MAMROSENKO, ALEXANDER M. GIATSINTOV

