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Abstract: The article is devoted to solving an important practical problem - determining 
the structure of  the subsurface space of  the geological environment based on 
surface seismic data. Thanks to the registration of  seismic waves reflected from the 
boundaries of  geological layers, it is possible to delineate hydrocarbon deposits, 
which makes it possible to effectively plan a field development scheme. Optimizing 
the production process makes it possible to make it profitable, including when 
developing unconventional hydrocarbon deposits. The paper discusses the technology 
of  constructing a migration image using the reverse time migration method. In the 
general case, an analytical derivation of  the calculation formulas was carried out. For the 
practically significant case of  an acoustic environment, simplified calculation formulas 
are explicitly written out and implemented in the form of  a software algorithm. The 
issue of  improving the quality of  the migration image without significantly increasing 
the computational complexity of  the problem is discussed separately. The authors 
demonstrated the performance of  this approach using the widely used Marmousi 
geological model.
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1. INTRODUCTION
Seismic exploration is the main method for 
detailed study of  the geological medium 
structure. Most of  the work is carried out 
using the reflected wave method in the 
modification of  the common depth point 
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(CDP). The seismic cross-sections obtained 
are interpreted by geologists. Based on them, 
they construct geological models and assess 
the resource base of  minerals.

CDP seismic cross-sections have several 
disadvantages: diffracted waves associated 
with faults and small objects are displayed as 
diffraction hyperbolas, inclined boundaries 
are not displayed in their true position, 
synclinal structures are displayed as loops. 
In cases where there are velocity anomalies 
in the geological model, the underlying 
reflecting horizons are less well focused, 
and their relief  is distorted. The seismic data 
migration procedure is aimed at minimizing 
these shortcomings and constructing a reliable 
seismic image.

One of  the advanced migration methods 
is the reverse-time migration method (RTM). 
The foundations of  this method were laid in 
fundamental works [1-3]. The method was 
subsequently developed and generalized to 
more complex media models using various 
parameterizations, integral formulas, and 
post-processing techniques by various 
researchers [4-8].

This article presents successful experience 
in using the RTM method to construct a 
migration image of  a complex geological 
medium in a two-dimensional setting. In 
the general case, a detailed derivation of  the 
fundamental formulas is presented, as well 
as a method for reducing them to the special 
case of  an acoustic model. The results of  the 
work contain a description of  the computer 
experiments performed and the constructed 
migration images.

2. MATERIALS AND METHODS
2.1. basIC Idea of rtM
Let the data ( )D D t=



 be recorded as a result of  
seismic exploration: a time-dependent signal 
at the receivers at points ,ix  Having denoted 
the wave field (generally speaking, unknown) 

in the entire geological massif  by u, we can 
write that D = Ru, where R is the restriction 
operator. Moreover, ,u U∈  where U is the 
space of  admissible functions of  coordinates 
and time. Let the physical and mathematical 
model of  the medium be described by the 
differential equation

[ ] ,F m u f=  (1)

where f is the known right-hand side, m M∈  are 
the parameters of  the medium from a certain 
space of  admissible parameters M, F[m] is a 
differential operator acting on functions from 
the space U. The differential problem based 
on equation (1) is well-posed when specifying 
suitable initial and boundary conditions. We 
can assume that these conditions are included 
in the definition of  the space U.

Then we can write the following residual 
function:
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In this formula, the wave field u is the only 
solution to equation (1), therefore, u = u[m] 
and Ψ = Ψ[m].

Let us write down the definitions of  several 
concepts used later in the article.

The Frechet derivative of  a functional A 
acting from a normed space E into R1 (A:E 
→ R1) at the point 0 x E∈  is a linear functional

( )
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x x
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Also, we will use the definition of  the 
adjoint operator A* to the operator A for 
spaces with the scalar product , :⋅ ⋅

, , .Ax y x A y∗=  (4)

The distribution of  medium parameters 
m*= argminΨ[m] can be considered a solution 
to the inverse problem of  finding medium 
parameters m using the known equation (1), 
the known right-hand side f and the known 
recorded data D. To find m*, we can use 
various optimization methods, for example, 
gradient methods using derivatives in the 
Frechet sense (3) are often used. It was noted 
that if  the initial approximate distribution of  
parameters is a smoothed version of  the true 
one (this is often the case due to the estimate 
of  the average value of  the velocity), then the 
desired increment of  medium parameters m* – 
minitial corresponds to the migration image of  
the medium. Based on this observation, the 
RTM method was proposed, which consists 
of  finding the gradient ∂Ψ/∂m and then 
processing it to obtain a migration image.

2.2. rtM In the operator forM

In this subsection, we consider a method 
for finding the derivative ∂Ψ/∂m. Direct 
differentiation of  the residual functional 
(2) with respect to the parameters of  
the medium m will require finding the 
derivatives ∂(Ru)/∂m, which in the discrete 
case corresponds to the Jacobian matrix of  
the first derivatives (Ru)i

jm
∂
∂

, the calculation 
of  which is extremely expensive. Therefore, 
to calculate the derivative ∂Ψ/∂m,  the 
technique of  solving the adjoint equation 
is used, which does not require explicit 
calculation of   ∂(Ru)/∂m. The corresponding 
formulas can be derived in several ways [5]. 
We chose the Lagrange multiplier method for 
the continuous optimization problem with 
constraints, presented below.

To optimize the residual functional 
( )( ) ( )

( )n

2

R t

1 Ru t D t
2

−


  under the additional 
constraint F[m]u = f, consider the Lagrange 
functional
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with arbitrary *, ,,   m u U Uλ∈ ∈ ∈

  where 
the space U* defines functions of  the same 
smoothness as in the space U, with the same 
boundary conditions, but with conditions at 
the final time instead of  initial conditions. 
From optimization theory it is known that the 
minimum of  the functional is achieved at the 
point where the derivatives of  the Lagrangian 
are equal to zero [9]. First, we write down the 
Frechet differentials of  the functional L with 
respect to u  and ,λ  using the definition of  
the adjoint operator (4):
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Equating the derivatives above to zero, we 
get a direct problem with respect to u and an 
adjoint problem with respect to λ:

[ ] 0  0,L F m u f
λ
∂

= ⇔ − =
∂ 

 (8)

( )* *0   [ ] 0.
 
L R Ru D F m
u

λ∂
= ⇔ + + =

∂




 (9)

Equation (8) is a direct problem that can be 
solved by a numerical method. Many different 
approaches have been developed for seismic 
problems, for example [10-12]. Equation (9) 
is an adjoint problem with respect to λ, which 
can also be solved numerically. In the next 
section it will be shown that for the acoustic 
model the operator F and its conjugate F* are 
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such that to solve the conjugate problem it 
is possible to use the same solver as for the 
direct problem.

Now consider the Frechet differential L 
with respect to the parameters of  the medium 
m under the assumption that the terms of  the 
operator F are linear with respect to m ( u , ,λ  
do not depend on m):

( ) [ ] ( )
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Thus, the derivative of  the functional with 
respect to the parameters m is an integral 
operator on the space   with kernel I:

( ) [ ] [ ]( )
0

,  .ˆ ˆ
T

M
I x m F m m F m u dtdxλ

Ω

= ⋅ + −∫ ∫
   (11)

The kernel ( )I I x=
  defines the integral 

operator defining the Frechet derivative, so 
I is usually called the gradient ∂Ψ/∂m. This 
kernel is the desired derivative.

So, the algorithm for calculating ∂Ψ/∂m   
is as follows:
1. Solve direct problem (8) – find u.
2. Solve the conjugate problem (9) – find λ.
3. Calculate the gradient ( )I I x=

  using 
the integral formula (11) based on the 
calculated u and λ.

2.3. aCoustIC Model

In this work, acoustic equations were used 
to describe the seismic wave propagation in 
the geological media. This model correctly 
describes the propagation of  P-waves, 
their multiple passage and reflection at the 
interfaces between layers. Mathematically, the 
model can be written as a scalar wave equation

2 .ttu c u f= ∆ +  (12)

In this equation, ( , )u u x t=
  is the deviation 

of  pressure in the medium from equilibrium 
state; ( ) 0c c x= >

  is the propagation velocity 

of  longitudinal waves, Δ is the Laplace 
operator. Thus, the operator F can be written 
as

[ ]
2 2d

2
2 2

i 1 i

F m c .
t x=

∂ ∂
= −
∂ ∂∑  (13)

The problem is considered with zero initial 
conditions, since before the start of  seismic 
exploration the medium was at rest. On the 
only physical boundary – the free surface – a 
zero boundary condition is set. Thus, we can 
define the spaces * :,�

{ }2
0: 0,  0,  0 ,

t ntt xf C f f f
== ∈∂Ω= ∈ = = =  (14)

{ }2 : 0,  0,  0 ,
t Tt T xtf C f f f
=

∗
= ∈∂Ω= ∈ = = =  (15)

From this we can obtain the self-adjoint 
condition F = F*:
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The restriction operator R represents 
taking values at points ,ix , and its conjugate 
R* is an operator that reduces the time signal 
at a set of  points to the sum of  delta functions 
over a coordinate at that set of  points. Thus, 
the right side of  the conjugate equation (9) 
–R*(Ru – D) is the sum of  the point sources 
located at the data receiver locations D.

To calculate I using formula (11), it 
remains to express in explicit form the 
expression [ ] [ ]( )F m m̂ F m u+ − . In this case, 
m̂  will not be included in the final formula, 
being transferred to another factor of  the 
scalar product according to formula (10). 
Considering the parameter m to be the square 
of  the velocity, from (13) we obtain

[ ] [ ]( ) 2F m m F m u cˆ uˆ ,+ − = ∆  (17)

( )
0

.
T

uxI dtλ= ⋅∆∫
  (18)

However, it should be noted that for 
other parameterizations of  the model under 
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consideration the result will be different. 
For example, considering the slowness 
β = 1/c2 as a medium parameter, we can 
write F1 = βutt – Δu, from which it follows 

[ ] [ ]( )1 1ˆ ttF m m F m u uβ+ − =  and formula

( )1
0

.
T

tt tx dI uλ= ⋅∫


 (19)

The last formula, taking into account 
the zero initial conditions on u and the final 
conditions on λ, according to the rule of  
integration by parts, can easily be rewritten in 
the form

( )1
0 0 0

.
T T T

tt t t ttI x u dt u dt u dtλ λ λ= ⋅ = − ⋅ = ⋅∫ ∫ ∫


 (20)

In this work, we used the simplified 
formula widely used in practice

( )
0

.
T

I x u dtλ= ⋅∫
  (21)

2.4. GradIent post-proCessInG for the 
MIGratIon IMaGe CalCulatIon

For some real problems, the resulting gradient 
∂Ψ/∂m is quite far from the desired migration 
image. There are several approaches to 
improve the result. For example, Least-Squares 
RTM performs a gradient descent procedure 
to achieve dm ≈ m* – minitial, but this method is 
computationally expensive. In this work, we 
used several simpler techniques that allow us 
to significantly improve the final migration 
image in a short computational time.

The first such method is the seismic 
signal attenuation compensation. It is known 
that the amplitude of  waves decreases due 
to geometric divergence even in a model of  
the geological media without dissipation. 
Consequently, the amplitude of  the gradient 
obtained using integral (21) decays with 
depth, because the sources of  both the direct 
and conjugate problems are located near the 
surface. To compensate for this effect, it was 
proposed to replace the integral formula (21) 
with the following:

( ) s:sources 0

2
s:sources 0

Image x = .

T

s s

T

s

u dt

u dt

λ

δ

∑

∑ +

∫
∫



 (22)

The non-negative denominator is separated 
from zero using the small constant δ. We also 
explicitly added summation over all sources 
to this formula: for each source there is its 
own set of  data D, and its own calculation of  
the direct and conjugate problems is carried 
out.

A standard Laplace filter is used to 
suppress low-frequency noise components in 
the resulting image.

Since the amplitudes of  (x)I   in the 
immediate vicinity of  sources and receivers 
are extremely large, but are not of  significant 
interest, when displaying I for visual analysis, 
values near the surface (down to depths of  
the order of  100 m) are set to zero.

3. RESULTS
The computational algorithm described in the 
work was implemented by the authors as a 
computer program in Python. To numerically 
solve the governing equations of  the direct 
and adjoint problems, the open-source 
solver SpecFem2D, based on the spectral 
element method, was used [13]. Fourth order 
elements were used as a basis for expanding 
the solution. Near the lateral and lower 
boundaries, absorbing PML layers were 
additionally used [14]. During the modeling 
process, the calculated pressure fields were 
saved to the hard disk, after which they were 
used to calculate the integral using formula 
(22).

A two-dimensional formulation of  the 
problem with the widely used test geological 
model Marmousi [15] in a monoparametric 
acoustic formulation (13) was considered. 
Fig. 1 shows the P-wave velocity distribution 
in the true media model. To build an initial 
guess model, this distribution was smoothed 
using the gaussian_filter function of  the 
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SciPy.ndimage library. For clarity, the 
difference between the initial guess and the 
true distribution m* – minitial is presented in 
Fig. 2.

When carrying out computer calculations, 
a square computational grid with a step of  20 
m was used, covering a geological model with 
dimensions of  10×3.5 km. The total time of  the 
computer experiment was 3.5 s, the time step was 
chosen equal to 3.5·10-4 s. The source function 
was a Ricker pulse with a peak frequency of  25 
Hz. On the day surface, data were recorded by 
491 receivers, uniformly located with a step 
of  20 m at a depth of  10 m. To construct a 
migration image, 61 sources were used with 
a step of  150 m at a depth of  10 m. Fig. 3 
shows the result of  the RTM method.

4. CONCLUSIONS
The work considers the seismic exploration 
inverse problem – determination of  the 
boundary positions between the geological 
layers. The derivation of  a calculation 
algorithm for the reverse time migration of  
seismic data in the general case is presented. 
Simplified calculation formulas for the 
acoustic model of  the geological media were 
obtained. The computational algorithm was 
implemented as a computer program. It 
was successfully used to solve the migration 
problem for the Marmousi test model. Analysis 
of  the resulting migration image confirms the 
possibility of  localizing reflective horizons 
and suppressing noise.

As a further continuation of  the research, 
the generalization of  the considered approach 
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Fig. 1. Spatial distribution of  the P-wave velocity in the Marmousi model.

Fig. 2. The difference between true model and used initial guess model.
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to more complex models of  geological media, 
for example, isotropic and anisotropic linear 
elastic models is prominent.
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