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Abstract: A calculation of  the sound pressure frequency dependences scattered by a finite 
elastic cylindrical shell placed in a liquid medium is presented. The shell has hemispherical 
ends and is considered either hollow or filled with gas or liquid. The scattered sound pressure 
under conditions of  hydroelastic contact on the shell surfaces is found by jointly using the 
Kirchhoff  integral and the integral equation for the elastic medium displacement vector, 
obeying the Lamé equation. Boundary conditions regarding stresses and displacements 
are formulated for each of  the shell contact surfaces with the external and internal 
environments. Considerating approach is based on the numerical transformation of  
continuous integral equations into a system of  linear algebraic equations using curvilinear 
isoparametric boundary elements. In this case, the elements geometry and the main 
variables (displacements and stresses) are specified using the same interpolating relations 
(shape functions). The scattered sound pressure frequency dependences are calculated and 
analyzed for various ratios of  the length and shell diameter.
Keywords: finite elastic cylindrical shell, Kirchhoff  integral equation, displacement vector, 
boundary elements, scattered sound pressure
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1. INTRODUCTION
It is known that the target detection range of  
modern sonar systems significantly depends 
on the energy losses of  probing and reflected 
signals. The increase in such losses with 
frequency dictates the need to reduce the 
location signal frequency. In addition, discrete 
signal components in the low-frequency 
range are less sensitive to fluctuations in 
the marine environment parameters and are 
very informative in identifying individual 
characteristics of  objects. In the context 
of  the principles of  a deformable solid 
mechanics, it is possible to obtain solutions 
to boundary value problems for objects 
of  non-analytical shape using numerical 
methods: finite differences, T-matrices, finite 
and boundary elements. Algorithms based on 
these methods form the basis of  common 
software packages for solving boundary 
value problems (ANSYS, NASTRAN, 
COSMOS/M, COMSOL Multiphysics [1-5], 
etc.).

With all the undoubted advantages of  
such packages, specially developed individual 
software can have significant advantages 
in practice, having: compactness, speed, 
uniqueness, interaction with analytical 
and approximate approaches, accessibility, 
absence of  an expensive license, etc. 
The solution presented in this article is 
based on the use of  a boundary integral 
equation with respect to unknown surface 
displacements and stresses, interpolated by 
identical polynomial functions through their 
values at the nodal points of  curvilinear 
isoparametric boundary elements. The 
calculation algorithm implementation 
was carried out using software specially 
developed by the author.

2. PROBLEM FORMULATION
The sound pressure ps scattered by an elastic 
body can be found using the Kirchhoff  
integral and the Green's function for free 
space, which is the point source field placed 
at a far-field point [6-9]:

( ) ( ) ( ) ( ) ( )1 0 1 0 0 1 01 [ ; ; ] ,4
S

p p G p G dS
n nπ
∂ ∂

= −
∂ ∂∫r r r r r r r  (1)

where p(r1) is the sound pressure in the far 
field of  the object (Fraunhofer zone); r1 
– radius vector of  the far field point; S – 
closed surface surrounding an object with 
a continuous external normal n; p(r0) and 
∂p(r0)/∂n – amplitude-phase distributions 
of  sound pressure and its gradient on the 
surface S; r0 – radius vector of  a point 
on the surface S; G(r1; r0) is the Green's 
function satisfying the inhomogeneous 
Helmholtz equation.

The transition from ideal boundary 
conditions on the diffuser surface to 
the conditions of  hydroelastic contact 
adds to (1) the integral equation for the 
displacement vector u and the boundary 
conditions for contact of  an ideal 
compressible fluid with an elastic medium 
[10-12]:

( ) ( ) ( ) ( ){ }0 0 0 0; [ ; ] ,t
S

G dS= − ∑∫∫u t u nr r r r r r  (2)

where t(r0) = nT(r0) – voltage vector; n is 
the unit vector of  the external normal to S; 
T(r0) – stress tensor of  an isotropic material; 
Gt(r; r0) – Green’s displacement tensor; ∑(r; 
r0) – Green’s stress tensor.

In equation (2), the stress vectors t(r0) 
and displacement u(r0) on the surface of  the 
body S are unknown, and in equation (1) in 
this case, p(r0) and ∂p(r0)/∂n on the same 
surface are unknown. The displacement 
vector of  the elastic medium u, with a 
harmonic dependence on time, obeys the 
Lamé equation and can be represented, as 
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is known, as a combination of  scalar and 
vector potentials [12].

The following boundary conditions must 
be satisfied on the surfaces of  the shell, 
based on the complete system of  equations 
of  the linear theory of  elasticity, which 
determines the state of  dynamic equilibrium 
of  the elastic body [11,12]:

1) the normal component of  the 
displacement vector un is continuous and 
related to the normal derivative of  the 
diffracted pressure pΣ = pi + ps (pi is the 
sound pressure in the incident wave):

( )( )2
0 ,1/ /n s

u p nρ ω Σ= ∂ ∂  (3)
where ρ0 is the density of  the liquid medium, 
kg/m3; ω = 2πf, f – sound signal frequency, 
Hz;
2) normal stress σn:
– on the outer surface of  the shell is equal 
to the acoustic pressure in the liquid

| ,n s pσ Σ=  (4)
- on the inner surface of  the shell it is either 
absent (hollow shell) or equal to the sound 
pressure of  the gaseous or liquid filler;
3) there are no tangential stresses:

| 0.i sτ =  (5)
Using (3)-(5), one group of  unknowns 

on S can be eliminated from equations (1) 
and (2), and the two remaining unknowns 
can be found from a joint solution of  these 
equations [12,13].

                                        a                                                                                    b
Fig. 1. Initial flat (a) and corresponding curvilinear isoparametric (b) boundary elements

The approach under consideration is 
based on the numerical transformation of  
continuous integral equations (1) and (2) 
into a system of  linear algebraic equations 
using quadratic isoparametric elements. The 
use of  curved boundary elements provides a 
more detailed discretization of  the boundary 
surface and increases the accuracy of  the 
result while reducing computation time. 
When constructing a mesh of  boundary 
elements, the sampling step Δ of  the 
surface S in the direction of  any of  the 
coordinates should not exceed (0.25÷0.5)·λ0 
(λ0 is the length of  the sound wave in the 
liquid). Near the edges and corners of  the 
surface, the calculation algorithm provides 
for condensation of  nodal points with a 
decrease in the sampling step up to values Δ 
~(0.025÷0.05)·λ0. With such discretization, 
the three-dimensional boundary of  the 
region S is divided into triangular and 
quadrangular elements (Fig. 1), at the nodes 
of  which some coefficients are specified, 
and the continuous integrand function is 
approximately represented as a series of  basic 
(interpolating) shape functions multiplied 
by these coefficients. The nodal coordinates 
of  any point of  the original elements ix

α
 

are transformed into the corresponding 
curvilinear coordinates xi (i = 1,2,3), and the 
geometry of  the element xi(ξ), displacement 
ui(ξ) and stress ti(ξ) are specified using the 
same shape functions [12,13].
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Using such relations allows us to obtain 
the matrix equation based on (2):
[ ]{ } [ ]{ },H u G t=   (6)

where H and G  are matrices of  coefficients 
obtained as a result of  numerical integration.

Integral (1) will take the form [11-13]:
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where pΣ(Q) is the diffracted sound pressure 
at point Q of  the surface S.

Having performed numerical integration 
(7) and expressing part of  the unknown 
stresses in (6) in terms of  pressure in 
accordance with the boundary condition 
(4), we obtain:

[ ]{ } [ ]{ } { }4 ,T u D p pπΣ Σ= +  (8)

[ ]{ } [ ]{ } { } ,H u G t F pΣ= +  (9)

where T, D, G and F are coefficient matrices.
Next, from equations (6) and (8), the 

distributions pΣ(Q) and (u∙n) on the surface 
S are found, and then, based on (7), pΣ(P) 
in a liquid medium is determined using 
quadrature formulas.

Let us consider the practical 
implementation of  this approach in relation 
to an isotropic circular cylindrical shell of  
length L and thickness h, limited at the 

ends by hemispheres of  radius a at different 
values of  the relative length L/a (Fig. 2):

We will assume that the shell is thin 
(h/a ≤ 0.05). As is known, for such shells 
it is possible, based on the Kirchhoff–Love 
hypothesis, to move from three-dimensional 
relations of  the theory of  elasticity to two-
dimensional ones. In this case, the exclusion 
of  tangential and shear forces allows, when 
describing small bending vibrations of  the 
shell, to use a system of  two differential 
equations and determine the projections 
of  all forces and stresses on the direction 
of  the normal to the middle surface of  the 
shell (the wave vector k is perpendicular to 
the z-axis of  the cylinder).

Let us introduce coordinate systems 
associated with each part of  the surface 
S, for which, at θ0 = 90°, all the main 
physical variables are functions of  only two 
coordinates, so the displacement vector 
will also have two components. For the 
cylindrical part of  the surface S2 they will 
have the form [9,14]:

1 1;  .ru u
r r r rϕϕ ϕ

∂Φ ∂Ψ ∂Φ ∂Ψ
= − + = − −

∂ ∂ ∂ ∂
 (10)

Using the representations of  the strain 
components εr, εφ through the components 
of  the displacement vector, as well as the 
generalized Hooke’s law for an isotropic 
medium, it is possible to express the elastic 
stresses on the surface S2 through the scalar 
Φ and vector Ψ potentials [12,15]:

2 2
2

1 2 2

2 2
2
22 2

1 12 ,

2 22 2 .

r r

r r

k
r rr r

k
r r r rϕ ϕ

σ λϑ µε λ
ϕ ϕ

τ µγ µ
ϕ ϕ

 ∂ Φ ∂Ψ ∂ Ψ
= + = Φ + − − +  ∂ ∂ ∂∂  


 ∂ Φ ∂Φ ∂ Ψ = = − + − Ψ −  ∂ ∂ ∂ ∂  

 (11)

where r, φ – cylindrical coordinates of  point 
Q; ϑ  = εr + εφ = divu; k1 and k2 are the wave 
numbers of  longitudinal and transverse 
waves in the elastic shell material.

Fig. 2. Elastic finite cylindrical shell with hemispheres at the 
ends; S2 is the area of  the lateral surface of  the cylinder, S1 

and S3 are the surface areas of  the hemispheres.

SERGEY L. ILMENKOV, SERGEY A. PERESELKOV, 
VLADIMIR I. GRACHEV, NIKOLAY V. LADYKIN.



429

RENSIT | 2023 | Vol. 15 | No. 4

INFORMATION TECHNOLOGIES

lg|pΣ(P)|, dB

Fig. 3. Levels of  modules of  frequency dependences of  an audio signal reflected by a shell filled with: 
air (1), water (2) and vacuum (3) at θ0 = 90°; L/a = 20; h/a = 0.01.

Similar relations for the hemispherical 
parts of  the shell S1 and S3 will have the 
form:

2
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where r, θ – spherical coordinates of  point 
Q; .r divθϑ ε ε= + = u

Substituting relations for the components 
of  the displacement vector and elastic 
stresses into the boundary conditions (3)-
(5), we obtain for each point Q of  the 
surface S a system of  algebraic equations 
for finding unknown coefficients in the 
expansions of  elastic potentials, and then 
we find the distributions pΣQ and ur at the 
boundary element nodes (points Q) on the 
surface S.

3. RESULTS OF NUMERICAL 
ANALYSIS OF CHARACTERISTICS 
SOUND REFLECTIONS
Let us consider the main results of  
calculations of  the frequency characteristics 

of  sound reflection by a steel shell of  the 
shape under consideration in the range of  
wave radii ka = 0.95÷25.0. Fig. 3 shows 
the frequency dependences of  the modulus 
levels pΣ(P) at traverse location (θ0 = 90°) for 
a shell filled with air (curve 1), water (curve 
2) and vacuum (curve 3). The geometric 
parameters of  the shell are: L/a = 20; h/a 
= 0.01.

As can be seen from the figure, the levels 
of  modules pΣ(P) for a hollow shell exceed 
the corresponding values for an air-filled 
shell on average over the range by 1...1.5 dB 
(≈20%...50%). For a shell filled with water, 
the added mass can lead to the interaction 
of  vibration modes and, accordingly, to 
an increase in the likelihood of  resonance 
phenomena occurring. The latter can 
also be determined by the propagation of  
Scholte-Stoneley type waves in the liquid 
and elastic waves of  the Lamb type in the 
shell material [11,12,14], which is observed 
mainly for ka  > 3. The values of  the 
resonant frequencies are determined by the 
integer number of  lengths of  these half-
waves, which fit along the closed contour of  
the shell. In the presence of  a liquid filler, 
the probability of  phase matching for such 
half-waves at the excitation point increases. 
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In addition, in this case, compared to an 
air-filled shell, at a number of  resonant 
frequencies (ka ≈ 5-10, 17-22, etc.) there is a 
tendency to double the frequency spectrum 
of  the reflected signal. Lower in frequency 
(ka ≤ 3) spatial coincidence resonances may 
occur.

Figures 4-7 show the frequency 
dependences of  lg|pΣ(P)|, dB for location 
angles θ0 = 0°; 30°; 60° of  a shell filled with 
air, at h/a = 0.01 and relative elongations 
L/a = 20; 10; 5 and 2.

The presented results show that at non-
averse location angles, the levels of  the 
reflected signal are generally 1...2 dB lower 
than at θ0 = 90°. When L/a decreases by a 
factor of  two, the repetition frequency of  
elastic resonances caused by the rounding of  
the shell contour by waves of  the Scholte-
Stoneley and Lamb type decreases by a 
factor of  2...3. When L/a < 10, the role of  
spatial coincidence resonances increases (up 
to ≈30%...50%), which manifest themselves 
predominantly in the range ka < 2 and 
location angles θ0 = 30°, 60°.

Fig. 5. Levels of  modules of  frequency dependences of  an audio signal reflected by a shell filled with air,
at L/a = 10; -θ0 = 0°; -θ0 = 30°; -θ0 = 60°.

lg|pΣ(P)|, dB

Fig. 4. Levels of  modules of  frequency dependences of  an audio signal reflected by a shell filled with air,
at L/a = 20; -θ0 = 0°; -θ0 = 30°; -θ0 = 60°.

lg|pΣ(P)|, dB
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4. CONCLUSION
The use of  a numerical transformation of  
continuous integral equations into a system 
of  linear algebraic equations for unknown 
displacements and stresses, determined by 
their values at the nodal points of  curvilinear 
boundary elements, made it possible to 
calculate the levels of  sound pressure 
dissipated by a finite elastic cylindrical shell. 
The latter has hemispherical ends, is placed 
in a liquid medium and is considered both 
hollow and filled with gas or liquid. The 
scattered sound pressure on the surfaces 

of  the shell is found by combining the 
Kirchhoff  integral and the integral equation 
for the displacement vector of  the elastic 
medium, which obeys the Lamé equation. 
The frequency dependences of  the modulus 
levels of  a stationary sound signal reflected 
by the shell are calculated and analyzed at 
various location angles, relative elongations, 
and options for filling its internal volume. 
The implementation of  the calculation 
algorithm was carried out using software 
specially developed by the author

lg|pΣ(P)|, dB

lg|pΣ(P)|, dB

Fig. 6. Levels of  modules of  frequency dependences of  an audio signal reflected by a shell filled with air,
at L/a = 5; -θ0 = 0°; -θ0 = 30°; -θ0 = 60°.

Fig. 7. Levels of  modules of  frequency dependences of  an audio signal reflected by a shell filled with air,
at L/a = 2; -θ0 = 0°; -θ0 = 30°; -θ0 = 60°.
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