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1. INTRODUCTION
In remote sensing systems, in various ranges of  
electromagnetic waves, the data obtained are 
often presented in the form of  digital images. 
When solving practical problems, these images 
are processed by one method or another. The 
tasks can be extremely diverse: restoring a 
defocused partially shaded image, combating 
noise, increasing spatial resolution, searching 
for information about a distorting hardware 

function, reconstructing lost data (lacunae), 
etc. [1-5]. Thus, an objective assessment of  the 
effectiveness of  recovery methods is extremely 
relevant, since it is an important part of  image 
processing systems obtained with remote 
sensing.

In this paper, new criteria are proposed 
for an objective estimate of  the quality of  
reconstructed images relative to the original 
"ideal" (undistorted). The use of  well-known 
and new objective estimate of  image quality 
makes it possible to assess the competitiveness 
of  image processing methods in remote sensing 
systems. Here, reconstruction algorithms 
are applied to sparse images (from unevenly 
spaced samples). I.e., to such images, over the 
entire field of  which only a certain number 
of  elements are available, while most of  the 
elements are missing. A high degree of  sparsity 
is simulated (90 percent of  the information is 
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missing). To restore digital images, methods 
developed at the V.A. Kotelnikov IRE of  
the Russian Academy of  Sciences are used. 
In [6,7,8,9], algorithms for the Interpolation 
Method of  Sequential Computation of  the 
Fourier spectrum (IMSCS), the method of  
projections onto convex sets (POCS) and 
the method of  amplitude iterations (MAI) 
adapted for the reconstruction of  sparse two-
dimensional signals were described in detail.

Additionally, as an ideological alternative to 
methods operating in the frequency domain, 
spline interpolation is used in our study 
[10,11]. The physical meaning of  this method 
is that for an arbitrary set of  reference points 
(nodes), a system of  linear equations is solved 
that models the behavior of  a curved elastic 
plate. The result is a relation describing a two-
dimensional spline surface. This approach has 
a certain versatility and can be applied for 
comparative analysis.

2. APPLICATION OF RESTORATION 
METHODS TO SPARSE IMAGES
As an example, to illustrate the effectiveness 
of  the methods of  reconstruction of  sparse 
images, we use an aerospace image of  the 
aircraft carrier "Midway" moored in the port 
of  San Diego (USA), turned into a museum 
ship since 1998 (size 1296 by 558 pixels) 
Fig. 1. For this purpose, a public Yandex map 
is used.

Directly during sparsity modeling and 
subsequent processing, a fragment of  the 
original image is used in Fig. 1 – the area 

near the stern of  the aircraft carrier with a 
size of  256 by 256 pixels (Fig. 2a). Fig. 2b 
shows a sparse image, where 90 percent of  
the information is deleted according to a 
randomly uniform law (black color). Unlike 
previous works, here, for sparsity modeling 
(in a Delphi program), a "mask" is used. This 
makes it possible not to shift the brightness 
up in order to reserve the "zero" intensity 
for "places of  lack of  information", and thus 
not to make, albeit a small, but compression 
of  the brightness range. Fig. 2c shows the 
restoration of  Fig. 2b using IMSCS (128 
harmonics, 1 iteration). Fig. 2d demonstrates 
the reconstruction of  Fig. 2b using a spline. 
The reconstruction of  Fig. 2b using POCS 
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Fig. 1. The original aerospace image (size 1296 by 558 
pixels).

                a                                               b 

                c                                               d 

                e                                                f

Fig. 2. Fragment of  the original image Fig.1 (size 256 by 
256 pixels) – (a); Sparse image (90 percent of  the information 
in Fig. 2a is missing) – (b); Restoration of  Fig. 2b) using 
IMSCS – (c); Restoration of  Fig. 2b) using a spline – (d); 
Restoration of  Fig. 2b) using POCS – (e); Restoration of  

Fig. 2b) using MAI – (f).
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(a frequency window with a radius of  31 
harmonics, 2500 iterations) is shown in Fig. 
2e. And, finally, the sparsity interpolation of  
Fig. 2b using MAI (frequency window with a 
radius of  31 harmonics, 2500 iterations) can 
be seen in Fig. 2f.

3. ESTIMATES OF THE RECOVERY 
QUALITY OF SPARSE IMAGES
An expert observer can visually compare 
the effectiveness of  the methods. The 
most "similar" to the "ideal" Fig. 2a are 
reconstructions using IMSCS (Fig. 2с) and 
using a spline (Fig. 2d). The recovery of  
a sparse image using POCS (Fig. 2e) and 
using MAI (Fig. 2f) is noticeably worse than 
the first two competing methods. This can 
be partially explained by a relatively small 
operating frequency window with a radius 
of  31 harmonics. The fact is that if  you set 
the frequency window much wider, then on 
the reconstructed images, in addition to the 
apparent increase in sharpness, there are 
significantly more interfering artifacts.

In order to adequately estimate the 
effectiveness of  the methods, it is necessary 
to calculate the quality criteria. Table 1 
shows objective estimates of  the quality 
of  reconstructed images [1,12]: SSIM – 
Structural Similarity Index Measure, image 
sharpness evaluation, the average contrast, 
SD1 is the standard deviation from its average 
value, SD2 is the standard deviation of  the 

pixel difference between the reference and 
reconstructed image, excess, asymmetry.

The Structural Similarity Index Measure is 
maximal when comparing the original "ideal" 
image with itself  – it is equal to 1. For all 
four methods of  reconstruction of  sparsity, 
the SSIM are quite close. IMSCS and spline 
SSIM are almost the same, while POCS and 
MAI have slightly lower indicators (the worst 
of  all POCS). Nevertheless, POCS shows the 
"best" result in terms of  sharpness estimates. 
According to this indicator, only IMSCS 
is nearby. This can be explained by the fact 
that the assessment of  sharpness is strongly 
influenced by parasitic artifacts (brightness 
differences compare Fig. 2c and Fig. 2e). 
For the same reason, POCS surpasses even 
the original "perfect" image in "average 
contrast". Similarly, both estimates of  SD 
systems for POCS are higher than those of  
competing methods. SD2 (deviation of  the 
pixel difference between the reference and 
reconstructed image) in MAI noticeably 
exceed SD2 with IMSCS and spline. This 
indicates that there are more significant 
structural differences with the "ideal" images 
of  restored POCS and MAI than in IMSCS 
and spline reconstructions. The excess of  the 
brightness values for a digital image indicates 
how flat or insular the distribution is when 
compared with the normal distribution. The 
fact that the calculated excess values for all 
images are less than zero indicates that all 
distributions are flat-topped (relative to the 
normal, whose excess is zero). As for the 
absolute values of  the excess for the studied 
methods, IMSCS is the closest to the original 
one.

The asymmetry of  the brightness values 
for a digital image measures the asymmetry 
of  the distribution near the average. Positive 
values of  asymmetry for all four methods 
indicate that the "tail" of  the distribution is 
stretched in the direction of  positive values. 
If  the asymmetry of  the image brightness 

EVALUATION OF IMAGES QUALITY 
OBTAINED BY REMOTE SENSING

Table 1
Objective estimates of the quality of reconstructed 

images.
ideal IMSCS spline POCS MAI

SSIM 1 0.894 0.895 0.826 0.847

image 
sharpness 
evaluation

16.337 8.149 6.264 8.23 7.207

average 
contrast

0.144 0.114 0.093 0.154 0.13

SD1 66.709 61.19 62.269 63.522 61.719

SD2 0 29.553 29.519 38.44 35.52

excess -0.101 -0.102 -0.114 -0.354 -0.253

asymmetry 0.88 0.773 0.77 0.643 0.666



330

No. 3 | Vol. 15 | 2023 | RENSIT

INFORMATION TECHNOLOGIES

values were zero, then the distribution would 
be symmetrical about its average (as in the case 
of  normal). According to this indicator, the 
method of  interpolation of  the sequentially 
calculated Fourier spectrum surpasses 
competitors in this study – it is closer to the 
"ideal" one.

After analyzing the data in Table 1, it 
can be stated that according to the objective 
estimates of  the quality of  reconstructed 
images calculated above, IMSCS has some 
advantage over competing methods. The 
expert assessment also leans towards the 
interpolation method of  the sequentially 
calculated Fourier spectrum. In [13], another 
objective quality criterion was introduced. 
As can be seen from the Table.1 some of  
the assessments may produce contradictory 
results. It is proposed to compare the forms 
of  brightness distributions of  reconstructed 
images with a similar distribution for the 
reference. This is practically implemented on 
histograms. Moreover, the histograms need to 
be "coarsened" a little, i.e. not to take them 
for all brightness gradations (256), but to 
calculate averaged, for example, 8 (we get 32 
columns in each histogram). This is due to the 
fact that the pixels of  some of  the brightness 
gradations may be physically absent from 
certain images [13]. Fig. 3 illustrates the 
normalized brightness histograms of  the 
images under discussion.

Fig. 3b indicates an extremely small amount 
of  significant information (10 percent) 
present in the sparse image. Upon closer 
examination of  Fig. 3, it can be seen that the 
type of  histograms varies significantly for 
different sparsity interpolation methods. And 
if  each of  them is numerically compared with 
the "standard" (Fig. 3a), then an objective 
criterion for evaluating the quality of  images 
will be obtained. By analogy with the already 
known  structural similarity index measure 
(SSIM), we will call it "histogram similarity 
index measure" (HSIM) [13].

It is proposed to calculate the measure of  
histogram similarity as follows [13]:

31
1 11 0

1 2
.

32
=

−
= ∑ ih ihih

hist hist
HSIM

In this formula: hist1ih1 – values along 
the columns of  the reference normalized 
histogram (Fig. 3a); hist2ih1 – values for the 
columns of  the normalized histogram under 
test (Fig. 3c). The averaged modulus of  the 
difference is calculated for each pair of  
histogram bars. In the proposed example, 32 is 
equal to the number of  bars in the histograms 
(256 divided by 8). So the above formula 
calculates the HSIM for IMSCS. Similar are 
calculated histogram similarity index measure 
to the spline while substituting in the formula 
as a test histogram values hist3ih1 (Fig. 3d), for 
POCS, substituting in the formula hist4ih1 (Fig. 
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                      a                                   b

                      c                                   d

                      e                                   f
Fig. 3. Brightness histograms for: the original image Fig. 
2a) – (a); sparse image Fig. 2b) – (b); restored Fig. 2c) 
using IMSCS – (c); restored Fig. 2d) using a spline - (d); 
restored Fig. 2b) using POCS – (e); restored Fig. 2b) using 

MAI – (f).
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3e), or hist5ih1 (Fig. 3f) when calculating the 
HSIM to MAI. Table 2 shows the histogram 
similarity index measure calculated according 
to the proposed method for the studied 
images. HSIM for the original (reference) 
image, in our case, means comparison with 
itself, so the difference in values is zero [13].

When evaluating sparsity reconstructions 
by various methods, spline has an advantage 
over competitors, IMSCS is in second place. 
Most significantly (in percentage terms) this is 
manifested if  data from normalized histograms 
are used for calculations.

Fig. 4 shows the amplitude spatial spectra 
on a logarithmic scale: the original ("ideal") 
image (Fig. 2a) – Fig. 4a; sparse image 
(Fig. 2b) – Fig. 4b; sparsity reconstruction 
using IMSCS (Fig. 2c) – Fig. 4c; sparsity 
reconstruction using a spline (Fig. 2d) – Fig. 
4d; sparsity reconstruction using POCS (Fig. 
2e) – Fig. 4e; reconstruction of  sparsity using 
MAI (Fig. 2f) – Fig. 4f. Vertically Fig. 4 the 
values of  the amplitudes of  the spatial spectra 
are postponed (on a logarithmic scale), along 
the other axes – the values of  the indices of  
brightness pixels in the image field.

In [1] it is stated: the amplitude of  a two-
dimensional discrete Fourier transform is an 
array whose components set the intensities 
in the image, and their corresponding phases 
make up an array of  offsets, which contains a 
significant part of  the information about where 
visible objects are placed in the image. Thus, the 
basic information about the contours (details) of  
objects in the images is contained in the phase 
spectrum. In this connection, the idea arises of  

creating some kind of  objective criterion for 
assessing the quality of  the phase spectrum of  
the reconstructed images. Visually, the phase 
spectrum of  images is difficult to interpret in 
any way. Fig. 5a shows the phase spectrum of  
the original "ideal" image, and Fig. 5b shows the 
spectrum of  a sparse image. Vertically, Fig. 5 
shows the values of  the phase of  spatial spectra 

EVALUATION OF IMAGES QUALITY 
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                 a                                             b

                  c                                             d

                  e                                              f

Fig. 4. Amplitude spatial spectra in logarithmic scale for: the 
original image Fig. 2a) – (a); sparse image Fig. 2b) – (b); 
restored Fig. 2b) using IMSCS – (c); restored Fig. 2b) using 
a spline - (d); restored Fig. 2b) using POCS – (e); restored 

Fig. 2b) using MAI – (f).

                 a                                             b

Fig. 5. The phase spatial spectra of  the value are in the range 
(-π , π]: of  the original image Fig. 2a) – (a); of  the sparse 

image Fig. 2b) – (b).

Table 2
Histogram similarity index measure

ideal IMSCS spline POCS MAI

HSIM for 
normalized 
histograms

0 0.094 0.049 0.153 0.157

HSIM 
for non-

normalized 
histograms

0 360.625 266.875 583.688 547.875
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(in the interval (–π, π]), along the other axes – 
the values of  the indices of  brightness pixels in 
the image field.

We propose to calculate pixel-by-pixel 
the differences in the phase spatial spectra 
between the original ("ideal") and sparse 
images (see Fig. 5). The array of  values of  the 
result of  the operation is in the range (-2π , 2π]. 
All similar arrays for the difference of  phase 
spatial spectra between the original ("ideal") 
and any of  the four images reconstructed 
by the methods studied here should have a 
smaller spread of  values. Fig. 6 shows sections 
of  arrays of  values: the phase spectrum of  
the "ideal" image minus the phase spectrum 
of  the sparse image Fig. 6a, and the phase 
spectrum of  the "ideal" undistorted source 
image minus the phase spectrum of  sparsity 
restoration using IMSCS Fig. 6b. Vertically 
Fig. 6, the values of  the phase difference of  
spatial spectra are postponed (in the interval 

(–2π, 2π]), horizontally – the values of  pixel 
brightness indices in the image field.

Fig. 6 shows that near the central frequency 
of  the spectrum (corresponding to the average 
brightness of  the image), the phase differences 
are relatively small. But as we move away into 
the high frequency region, the values of  the 
phase difference increase on average. In the 
first row of  Table 3, the phase differences for 
the full spectrum between the "ideal" and the 
reconstructed images considered here by the 
methods are given.

The results for a sparse image are obviously 
the worst. The ratio of  the difference of  the 
phase spectra (in rad.) of  the "ideal" image 
with itself  is an array of  zeros (the first 
column of  Table 3), i.e. the best result. In 
order to put competing methods in more 
equal conditions, we limit the calculation of  
the difference between the phase spectra to 
a region near the central frequency with a 
radius of  31 harmonics. This corresponds 
to the frequency window size chosen in this 
paper for POCS and MAI.

Fig. 7 shows the corresponding sections for 
the central zones (with a radius of  31 harmonics) 
of  the difference in the phase spatial spectra.

Table 3, in the second line, shows the 
values of  the SD for the central part of  the 
spectrum (with a radius of  31 harmonics) 
of  the difference in phase spectra (in rad.) 
between the "ideal", sparse and reconstructed 
images. According to this indicator, IMSCS 
takes the first place, the second is spline, the 
third is MAI, and the last is POCS.
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                                         a

                                          b
Fig. 6. Sections of  the difference of  the full phase spatial 
spectra: the "ideal" undistorted source image (Fig. 2a) minus 
the phase spectrum of  the sparse image (Fig. 2b) – (a); the 
"ideal" undistorted source image (Fig. 2a) minus the phase 
spectrum of  sparsity recovery using IMSCS (Fig. 2c) – (b).

Table 3
SD of the difference of phase spectra (in rad.) 
between the "ideal" and reconstructed images

ideal sparse IMSCS spline POCS MAI

SD for the 
full spectrum

0 2.529 2.423 2.362 2.442 2.438

SD for the 
central part of 
the spectrum 
(with a 
radius of 31 
harmonics)

0 0.893 0.63 0.641 0.714 0.701
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4. CONCLUSION
The paper proposes new objective assessments 
of  the quality of  images obtained by remote 
sensing (the histogram similarity index measure, 
the SD of  the difference in phase spectra). The 
following methods are used as tested methods: 
the Interpolation Method of  Sequential 
Computation of  the Fourier Spectrum (IMSCS), 
spline interpolation, the method of  projections 
onto convex sets (POCS) and the method of  
amplitude iterations (MAI). Competing methods 
reconstructed the sparsity modeled according 
to a randomly uniform law (90 percent of  the 
information is missing). IMSCS showed the 
best performance in almost all estimates. The 
conducted research allows us to conclude that 
the proposed criteria can be applied in principle 

to assess the quality of  images obtained by 
remote sensing. This allows you to check the 
effectiveness of  digital image recovery methods 
used to solve various practical problems.
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