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1. INTRODUCTION
Shannon–Hartley theorem modification for 
the channel capacity defined that MIMO 
channel is more effective than SISO due to 

independent communication channels between 
transmitters and receivers [1]. The number of  
communication channels is min(Ntx, Nrx) [1,2], 
where Ntx – is the number of  transmitting 
antennas and Nrx – is the number of  receiving 
antennas.

Diversity on both sides of  the system and 
coherent signal processing are the special 
features of  MIMO systems. Those features 
together with increasing of  number of  
independent communication channels allows 
to improve noise immunity [1,3,4].

The fact that the number of  independent 
communication channels for MIMO 
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systems is Ntx∙Nrx but the real number of  
communication channels which used for 
one symbol transmission is Nrx. That is the 
reason why different symbols received with 
different quality [1,5].

Spatial multiplexing is used in MIMO 
systems when one symbol transmits via one 
antenna per one timeslot. Improving noise 
immunity of  the system we may combine 
symbols in special space algebraic codes 
which are presented in matrix format [6,7]. 
One of  these codes used for 2×2 MIMO 
systems is so called Golden code for two 
transmitting and two receiving antennas 
[8,9]. Golden code performance gain is 
1.5-2 dB [8,10,11]. The breaking factor for 
widespread of  algebraic codes for massive 
MIMO systems is high computational 
complexity of  optimal demodulation [10,12]. 
For example, computational complexity 
of  Maximum Likelihood demodulator in 
algebraic codes is growing in line with 

2

2 ,b txk N  where kb – is the number of  bits per 
modulated symbol.

In those papers [13,14,15] offered 
extended orthogonal precoding method 
for MIMO systems with full diversity 
reception using special orthogonal matrices 
with dimensions  ( )2 2 .tx txN N×  The method 
demonstrates that resulted orthogonal 
matrices give us the minimum of  maximum 
variance of  QAM symbols for linear 
demodulation method [16].

The other way to impact on noise immunity 
of  the system to get the information about the 
channel to have the chance of  choosing the 
space time code. There is a popular way to 
have the control closed loop to transmit the 
information [1,17,18] within the system. The 
key factor for the efficiency of  the method is 
precise information about the channel and the 
capacity of  reverse closed loop [17,19,20].

This paper offers the combination of  
orthogonal precoding and channel state 
information for choosing appropriate 
precoding matrices. The necessary minimum 
value of  reverse channel information is only 
few bits. As shown below for MIMO 8×8 it’s 
only 3 bits are enough.

2. MIMO SYSTEM MODEL
MIMO spatial multiplexing system model 
describes the connections between the 
transmitter and receiver and might be expressed 
as [1,2]:

,n n n= +y Hx η  (1)

where ( )(1) (2) rx
TN

n n n ny y y =  y   – 
(Nrx×1)-dimensioned vector of  received 
signal; H – (Nrx×Ntx)-dimensioned MIMO 
channel matrix which consist of  scalar 
channel parameters (complex transmission 
coefficients) h(i,j) which are non-correlated 
zero mean Gaussian with the variances 

( ){ }2, 1 ,i j

tx

E h
N

=  which means that the channel is 
independent Rayleigh fading channel; ηn – 
(Nrx×1)-dimensioned Gaussian noise vector 
with covariance matrix { },H

n nEη =R η η  
which are mostly diagonal [1].

In such MIMO system where Ntx – is 
the number of  transmitting antennas and 
Nrx – is the number of  receiving antennas 
the input modulated symbols stream divided 
into number of  (Ntx×1)-dimensioned vectors 

( )(1) (2) ,tx
TN

n n n nx x x =  x  where every m-element 
of  n-vector is ( )

( 1) ,  1, ,  1,2,...
tx

m
n n N m txx s m N n− += = =

Every modulated symbol is zero mean E{si} = 
0, and unit power { }2 1.iE s =

Let’s take the same approach as it was 
in [13,14,15], when using the transmission 
of  extended vector of  modulated symbols 

1 2 ,
TT T T

L  x x x x
   which is one structure 

of  L – vectors and size of  this vector is 
(LNtx×1).  Extended channel model for this 
vector is
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,= +y Hx   η  (2)
where

1 2 ,
TT T T

L  y y y y
 

1 2 ,
TT T T

L  
 η η η η

 
 
 
 
 
 

H O O
O H O

H

O O H









   



– is (LNrx×LNtx)-dimensioned block diagonal 
extended channel matrix.

Let’s have new matrix ,F  which is 
(LNrx×LNtx)-dimensioned and use it for 
precoding our extended vector x . We may get 
new vector z which is .=z Fx   New channel 
model has the form:

.= +y HFx 

  η  (3)
MMSE-based demodulated vector and 

covariance matrix for this vector are given 
below:

( )

1

1

1

.

tx

tx

LN

LN

ρ

ρ

−

−

 ′ ′ ′ ′= + 
 

′ ′= +

x F H HF I F H y

V F H HF I

     

 

    

 (4)

Than we have

( )

1

1

1

1

1 ˆ,

,

tx

tx

tx

LN

LN

LN z

ρ

ρ

ρ

−

−

−

 ′ ′ ′ ′= + = 
 

 ′ ′ ′ ′= + = 
 

′ ′ ′= + =

x F H HF I F H y

F H H I H y F z

V F H H I F F V F

     

 

    


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 (5)

where 
1

1ˆ
txLNρ

−
 ′ ′= + 
 

z H H I H y  

  – is MMSE-based 
vector for z, ( ) 1

txz LNρ
−

′= +V H H I   – covariance 
matrix for z vector.

In that transformation the resulted 
covariance matrix is block diagonal matrix, 
as given below:

,

MMSE

MMSE
z

MMSE

 
 
 =
 
 
 

V O O
O V O

V

O O V







   



 (6)

( ) 1
,

txMMSE Nρ
−

′= +V H H I  (7)

where VMMSE is (Nrx×Ntx)-dimensioned MMSE-
based covariance matrix for symbol vector in 
the system with simple spatial multiplexing, for 
channel model (1).

3. ORTHOGONAL PRECODING 
USING INCOMPLETE EXTENDED 
VECTOR
As we may see in [13], orthogonal precoding of  
transmitted symbols does not affect the trace 
of  covariance matrix of  estimation errors. It 
means that average values of  SNR after linear 
demodulation have not been changed but 
in same time the probability distribution is 
changed, which means that noise immunity of  
the system is getting better due to the minimum 
of  maximum variance criteria [16]. Next 
important point in [13] is that we may choose 
types of  orthogonal matrices which give us 
the way to reduce the variety of  minimum and 
maximum variance in covariance matrix and 
reduce the mean error probability. When we 
apply our extended vector with L = Ntx size 
there are no variety between minimum and 
maximum variance and all variances are equal 
to the mean. The other side of  the approach 
is negative because we must operate with large 
size vectors and matrices. It would be good to 
have the approach which operates with smaller 
vectors and matrices. For example, two vectors 
with (Ntx×1) size give us one extended vector 
with (2Ntx×1) size and orthogonal precoding 
matrix will be (2Ntx×2Ntx) size.
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Let’s take system with Ntx and L = 2, choose 
the precoding matrix as following:

4 4

4 4

1 ,
2

j

j

e
e

ϕ

ϕ

− ′
=  

−  

I PF
P I

  (8)

where φ – is rotation angle for symbol 
constellation; P4 – is (4×4)-dimension 
permutation matrix where every element is 0 
except one which is equal to 1 and it means 
that F  is orthogonal matrix.

For the maximum diversity gain, we should 
have 0 at main diagonal for matrix P4. This is 
the situation when every symbol transmits via 
two different antennas.

Considering new covariance matrix of  
estimation errors according to (5) - (7)

4 4

4 4

1 .
2

z

MMSE MMSE

MMSE MMSE

′= =

 ′+
 =
 ′+ 

V F V F

V P V P

V P V P

   





 (9)

Since we are interested in variances of  
error of  estimation only which are located at 
main diagonal and then we do not have any 
concerns about the rest of  block matrices 
inside. Having our permutation matrix P4 
we may get new vector of  diagonal elements 
of  matrix V :

( ) 4

4

1diag ,
2

MMSE MMSE

MMSE MMSE

+ 
=  + 

v P v
v V

v P v





 (10)

where diag(A) is the operator which creates 
vector from diagonal elements of  A matrix, 

( )diagMMSE MMSEv V  – Ntx-dimensioned 
vector of  diagonal elements of  MMSE-based 
covariance matrix.

Considering the example of  following 
permutation matrix:

(1)
4

0 0 0 1
0 0 1 0

.
0 1 0 0
1 0 0 0

 
 
 =
 
 
 

P  (11)

In that case for the first half  of  diagonal 
vector v  we can write the following 
expressions:

( )

( )

( )

( )

1 ,1 ,4

2 ,2 ,3

3 ,3 ,2

4 ,4 ,1

1
2
1
2
1
2
1 .
2

MMSE MMSE

MMSE MMSE

MMSE MMSE

MMSE MMSE

v v v

v v v

v v v

v v v

= +

= +

= +

= +









 (12)

The second half  of  diagonal vector v  is 
the same as the first one.

As the result of  orthogonal precoding (12) 
there are vector with two variances instead 
of  four different variances for MMSE-based 
algorithm and maximum of  those new variances 
guaranteed less than original ones. We should 
note that chosen permutation matrix does not 
realize that maximum of  new variances would 
be minimal because there no all combinations 
located at main diagonal.

We may choose other permutation matrices 
with different locations of  "1", for example:

(2) (3)
4 4

0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0

, .
1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

   
   
   = =
   
   
   

P P  (13)

For these matrices, we obtain the following 
variance values of  estimation errors using 
orthogonal precoding:

( )

( )

( )

( )

( )

( )

( )

( )

(2) (3)
1 ,1 ,3 1 ,1 ,2

(2) (3)
2 ,2 ,4 2 ,2 ,1

(2) (3)
3 ,3 ,1 3 ,3 ,4

(2) (3)
4 ,4 ,2 4 ,4 ,3

1 1
2 2
1 1
2 2,
1 1
2 2
1 1 .
2 2

MMSE MMSE MMSE MMSE

MMSE MMSE MMSE MMSE

MMSE MMSE MMSE MMSE

MMSE MMSE MMSE MMSE

v v v v v v

v v v v v v

v v v v v v

v v v v v v

= + = +

= + = +

= + = +

= + = +

 

 

 

 

 (14)

Using three variants of  permutation 
matrices (1) (2) (3)

4 4 4, ,P P P  we may search the 
whole set of  combinations for diagonal 
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vector. We may transmit the information 
selecting the right combination for 
transmission with minimum of  maximum 
variance. For our system with Ntx = 4 it is 
only 2 bits needed in the feedback loop to 
transmit the information about the view of  
precoding matrix.

Large scale configurations for MIMO 
systems may use the same approach (see 
(11), (13)) and the number of  those 
matrices to search the whole set of  
combinations is (Ntx – 1) when Ntx=2m. 
The number of  bits is needed to transmit 
the information is m.

Those kinds of  systems when we may 
select the precoding matrix and transmit that 
information via reverse link, are the systems 
with the control closed loop.

4. SIMULATION RESULTS
The section offers simulation results for 
proposed orthogonal precoding algorithm 
with matrix selection for various MIMO 
configurations. The simulation has been done 
with following conditions:
•	 MIMO channel with independent Rayleigh 

fading;

•	 QPSK modulation;
•	 MMSE-based demodulation.

In Fig. 1 we show bit-error rates (BER) for 
4×4nMIMO configuration for the following 
modes:

•	 SMx – is ordinary spatial multiplexing;

•	 SMx + OrtPr – is spatial multiplexing for 
two time slots;

•	 SMx + CL-OrtPr – is spatial multiplexing 
with proposed orthogonal precoding for 
time slots and close loop (Close Loop 
Orthogonal Precoding).

We may see that the orthogonal precoding 
with close loop increases noise immunity 
in 2-3 dB for BER range 0.01-0.001 with 
comparison to ordinary spatial multiplexing 
system. Compared to a MIMO system 
using orthogonal open-loop (uncontrolled) 
precoding, the proposed method provides a 
gain of  ~ 1 dB.

For the configuration MIMO 8×8 see 
Fig. 2, the gain compared to conventional 
multiplexing is 1.6-4.1 dB, and compared to 
orthogonal open-loop precoding, the gain is 
0.5-1.5 dB.

Fig. 1. BER vs. SNR per bit for proposed system with 
orthogonal precoding and orthogonal precoding with closed 

loop for 4×4 MIMO system.

Fig. 2. BER vs. SNR per bit for proposed system with 
orthogonal precoding and orthogonal precoding with closed 

loop for 8×8 MIMO system.
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Fig. 3 shows performance curves for is 
16×16 MIMO configuration. Here, there are 
gains of  0.9-3.3 dB and 0.3-1.0 dB compared 
to systems with conventional spatial 
multiplexing and an orthogonal precoding 
system without control, respectively.

Note that for all configurations, the 
gain increases as the signal-to-noise ratio 
increases.

5. CONCLUSION
The orthogonal precoding method, which uses 
a closed reverse channel control loop to select 
a precoding matrix, improves the performance 
of  a multi-antenna MIMO communication 
system by increasing the diversity order. Our 
precoding algorithm based on minimum of  
maximum variances optimal criteria which 
operate with elements of  main diagonal 
of  covariance matrix for MMSE-based 
demodulation algorithm.

Close loop utilizes for transmission 
the information about precoding matrices 
demonstrating the better diversity effect using 
part of  extended vector with modulated 
symbols. The volume of  the information 
needed for 4×4 MIMO system is only 2 bits. 

The combination of  orthogonal precoding 
for strong sparse matrices and using only part 
of  extended vector with modulated symbols 
do not increase computational complexity at 
transmitting and receiving sides of  MIMO 
systems.

The simulation results for orthogonal 
precoding with close loop provide us with 
1-4 dB gain which depends on dimensions of  
MIMO system and required BER interval.

As the signal-to-noise ratio increases, the 
gain from using the proposed orthogonal 
precoding method with a closed control loop 
increases.
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