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1. INTRODUCTION
One of  the directions of  modern spintronics 
is the study of  spin fluxes in conductors and 
semiconductors in order to use these in various 
kinds of  microelectronic devices [1, 2]. In recent 
decades, a new scientific direction in condensed 
matter physics has been formed – straintronics, 
which uses physical effects in matter due to 

deformations that occur in micro-, nano- and 
hetero-structures under the action of  external 
controlling fields, leading to a change in the 
electronic structure, electrical, magnetic , optical 
and other properties of  materials [3]. One of  the 
branches of  straintronics is aimed at studying the 
effect of  mechanical stresses on the electronic 
properties of  a substance.

Earlier, within the framework of  the created 
models of  a stress-strain ferromagnet, a solu-
tion of  Landau-Lifshitz-Gilbert type equations 
was obtained in the form of  a dynamic hysteresis 
loop [4] and it was shown that the crystal field 
effectively interacts with the spin moments of  
localized electrons [5], and taking into account 
the spin-orbit interaction can effectively polarize 
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conduction electrons in the macroscopic region 
[6].

In the paper the dynamic control of  a 
polarization by conduction current and torsional 
strain, which are variable in magnitude and 
direction, is considers. The novelty of  the 
proposed approach lies in taking into account the 
interaction with the crystal field of  a deformed 
metal in the model Hamiltonian of  collective 
conduction electrons using relativistic spin-orbit 
corrections of  the second order. Previously, this 
interaction was not taken into account, since 
in an unde-formed crystal it does not create 
a macroscopic coherent polarization of  spin 
currents.

2. MODEL BUILDING
Let us consider the mechanically induced spin 
polarization of  the conduction electron in a 
homogeneous and isotropic polycrystalline. The 
interaction of  the collective electron with the 
crystal field is chosen in the form of  a spin-orbit 
interaction with lattice ions, that is, relativistic 
corrections in the second order of  a magnitude 
1/с, where c is the speed of  light. The energy 
of  the Coulomb interaction of  conduction 
electrons with each other, as well as with the 
other electrons of  the crystallite, both collective 
and localized in the ions of  the lattice, that is, 
with the crystal in the framework of  the self-
consistent field method, is taken into account by 
replacing its mass with the effective mass m.

Let there are N sites in the crystallite, each of  
which contains identical ions with an effective 
charge +Ze. Such lattice creates a perturbation 
of  the potential energy of  an electron at a point 
with a radius vector r and the corresponding 
electric field
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where ε0 is the electrical constant, e is the 
elementary charge, rk is the radius vector of  
the k-th node of  the lattice. The value of  the 
effective charge Z can be estimated by equating 

the coordinate of  the maximum of  the hydrogen-
like radial wave function to the covalent radius 
of  the atom. For example, for platinum the 
atomic radius is 1.39∙10–10 m, which for a 6s shell 
corresponds to Z ≈ 22.45.

The spin-orbital addition to the electron 
energy has the form [7]
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where m is the effective mass of  an electron with 
charge –e, where ħ is the Dirac constant, p and s 
are the electron momentum and spin operators 
respectively.

The dynamics of  the electron spin, created 
by perturbation (1), is described by the equa-tion 
for averages [8]
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where εαβγ is the unit asymmetric Levi-Civita 
tensor. Here and below greek indices denote 
spatial variables.

We choose the wave function of  the collective 
conduction electron in the form of  the Wannier 
function [9]:
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where Ψ(r) is the hydrogen-like function of  an 
electron, Rn is the lattice vector.

After summing over the spin variables, setting   
ˆ =s s and performing the change of  variables 
– ,k →r r r  we obtain the equation
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where Î  is the electron orbital momentum 
operator.

Hydrogen-like functions are small at r > 
naB/Z, where aB = 5.29∙10–11 m is the Bohr 
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radius and n is the principal quantum number. 
Therefore, the average on the right side of  
expression (2) is non-zero only when Rn – rk = 0 
or av and Rm – rk = 0 or av, where av is a vector 
drawn to the nearest neighbouring site. Then, 
taking into account that the orbital momentum 
operator is Hermitian, we obtain
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Here, ( ) ( ) ( )±
ν ν νΨ = Ψ + ±Ψ −r r a r a  are 

functions with parity coinciding (index "+") and 
with opposite (index "–") parity of  the function 
Ψ(r). The equation implies summation over 
the index v over pairs of  symmetrically located 
nearest neighbouring sites.

Introducing the wave vector ( ) ,em e n= −k j   
where j is the charge current density, ne is the 
concentration of  conduction electrons, we 
obtain in the first order of  smallness in kav the 
equation of  motion of  the conduction electron 
spin:
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In a non-deformed crystallite, due to the 
orbital momentum unquench [10], the value 
J = 0.

3. EQUATION OF SPIN DYNAMICS IN 
STRESS-STRAIN CRYSTAL
Let us consider an inhomogeneous distortion, 
in which a point, including a crystal site with 
coordinate r, is transferred to a new position 
with coordinate r' by the displacement vector u, 
related to the original by known relations [11]

( ), , ,r r u dr u dr u uα α α α αβ αβ β αβ β α′ ′= + = δ + = ∂  

with the help of  which it is easy to obtain shift 
derivatives:
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Using shift derivatives, the orbital momentum 
operator and wave function can be repre-sented 
as
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Correspondingly, the orientations of  the 
crystal axes and orbitals of  valence electrons 
change under deformation. With sample torsion 
strain along the n axis of  the form Ω(r) = 
n(rn)ω, where ω is an angle of  torsion per unit 
length, rad/m, limited to the first degrees of  
deformation, we obtain
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In the approximation linear in ω, taking 
into account the Hermiticity of  the orbital 
momentum operator and the commutation 
relations
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Let us substitute these relations into the 
formula for the operator J in the equation (3):
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The relation (5) is written in the coordinate 
system associated with the axes of  the crystallite. 
Let us introduce a laboratory coordinate 
system associated with instruments that set the 
conduction current and distortion and measure 
the spin components. The components of  
vectors and tensors in the laboratory system will 
be denoted by non-primed indices, but in the 
coordinate system, associated with the crystal 
axes, by prime marks.

Let us transform the vectors of  current 
density and torsion axes from the laboratory 
system into the system of  crystal axes 

' ', ,j p j n p n′ ′σ σ σ σ δ δ δ δ= =  and the vectors I and J 
from the system of  crystal axes into the laboratory 
one 1

' ' ,J p J−
α αα α=  where a ap ′  is a unitary rotation 

matrix, which is conveniently expressed in terms 
of  Euler angles. Substituting this transformation 
into equation (3) and averaging the vector s in the 
macroscopic region over random orientations 
of  crystallites:
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Analytical averaging of  equations (7) leads to
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The maximum value of  J is obtained when 
the torsion axis is orthogonal to the current 
density vector. In this case

.K= −ωJ j  (9)

It follows from Eq. (3) that the spin modulus 
of  a single electron is conserved in a non-
deformed crystallite. Equation (6) shows that in 
the presence of  inhomogeneous distortion, the 
modulus of  the spin averaged over the sample 
is not conserved due to the second term on the 
right side. Therefore, it can be considered as a 
relaxation one and, by analogy with the Bloch-
Bloembergen equation, can be written as

{ } ,e− δ − δ ×δ = −  τ
s sI J s  (10)

where es  is the equilibrium value of  the spin 
averaged over the sample, τ is the longitudinal 
relaxation time. In this case, the steady state in 
(6) corresponds to the orientation of  the average 
spin parallel or antiparallel to the vector J . 
Averaging the perturbation (1) over the quantum 
state and over random orientations of  crystallites, 
similarly to the averaging of  its commutator, we 
obtain that the energy of  the states when the 
average spin is oriented parallel or antiparallel to 
the vector J  is 2,± J  respectively.

Then, at a finite temperature T, taking into 
account the formula (9), we write the equilibrium 
value of  the spin averaged over the sample in the 
equation (10) in the form:

th ,
2 2e

B

Kj
j k T

 ω
= −  

 

js 

 

where kB is the Boltzmann constant. Thus, 
the equation for the dynamics of  the average 
electron spin (6) takes the form

[ ] 1 th .
2 2 B

d KjK
dt j k T

−   ω
= −ω × − τ +     

s jj s s 

 (11)

In the steady-state case, the average spin of  
the conduction electrons over a polycrystalline 
sample will be oriented predominantly along the 
current density vector j, as was shown earlier in 
[6].
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For an s-electron with l = 0 in the relation 
(8), all integrals are equal to zero. In transition 
metals, the s and p bands overlap [10]. Therefore, 
collective conduction electrons can be formed 
from p-state electrons. In a crystallite, the axis of  
localization of  the maximum electron density of  
the p-electron will be oriented in the direction of  
the v-pair of  nearest neighbours, that is, along 
the vector av. Let us direct the polar axis z along 
the vector av and count the azimuthal angle φ 
from the plane avr. Then the wave function of  
the electron can be represented as:

( ) ( ) ( )1
3 cos ,

4 ni R rΨ = θ
π

r  

where Rn1(r) is is the p-electron radial wave 
function, θ is the polar angle. Then from the 
formula (8) follows the form of  the coefficient 
K:
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where a is the distance to the nearest neighbours,
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4. CONCLUSION
The resulting equation of  motion (11) 
demonstrates the dynamic effect of  controlling 
the spin polarization of  conduction electrons 
with the inhomogeneous deformation of  the 
metal. The resulting equations are valid for a 
wide class of  crystals with strong spin-orbit 
interaction, for example, for platinum, etc. 
The effect can find application in a number of  
branches of  modern spintronics.

Thus, over last 3 years, it have appeared 
a number of  experimental works in which 
the discovered effects of  spintronics and 
spincaloritronics have not yet been explained: 
controlling the direction of  the heat flux by the 
magneto-thermoelectric effect in a deformed 
metal magnet [12], expansion of  the temperature 

range of  heat pumping using elastocaloric 
effect [13], anomalous Righi-Leduc effect in 
ferromagnetic materials [14]. The dynamic effect 
presented in this paper can form the basis of  the 
theory of  new effects of  strain spintronics.
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