Vol. 6, №1, 2014


Zalogin N. N.

Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, http://www.cplire.ru,
11/7, Mokhovaya str., 125009 Moscow, Russian Federation,
Kalinin V. I.
Kotel’nikov Institute of Radio-Engineering and Electronics, Fryazino Branch, Russian Academy of Science, http://fire.relarn.ru
1, Vvedensky sq., 141120 Fryazino, Moscow region, Russian Federation
Sknarya A. V.
Tikhomirov Scientific-Research Institute of Instrument, http://www.niip.ru
3, Gagarina str., 140180 Zhukovsky, Moscow region, Russian Federation

As is known, the optimal probing signal for active sensing (both radio and acoustic) is the so called white noise, i.e. ultrawide-band chaotic signal with normal (Gaussian) probability distribution, infinite in time and frequency domains. This signal enables simultaneous and precise evaluation of distance to target and its speed. The use of spaced miniature receiver antennas and interferometric methods allows us to considerably increase the precision of azimuthal and elevation measurements of located targets. Indeed, such signals are impractical. However, long chaotic signals with frequency bandwidth of the order of octave (fmin/fmax = 2) ensure necessary precision and unambiguity of the measurements. A characteristic feature of such signals is laborious processing: mutual correlation of emitted and received signals is calculated. In microwave band, typical of radiolocation, digital methods are inapplicable because of signal quantization difficulties, and analog methods – because of impossibility to provide signal delays of the time to target and back. The present paper is devoted to investigation of certain ways of implementation of active locators using wideband chaotic probe signals. In particular, there is a method for calculating mutual correlation of such signals using double spectral transform of the signal sum. Experiments with a radar are described, with near octave-bandwidth continuous centimeter-band signal. Good capabilities of determining coordinates and speed of the located targets are demonstrated. Such location method can be implemented only for relatively small target distances. In underwater echo sounders (sonars), relatively low frequencies are used, which allows digital-to-analog and analog-to-digital signal transforms. Therefore, signal forming and correlation function calculation can be made on contemporary standard computers. Simulation of various underwater sonars, confirmed by physical experiments, demonstrates high efficiency of the use of wideband chaotic signals.

Keywords : remote sensing, wideband chaotic signal, octave band, correlation function, digitizing the signal, double spectral transform, microwave range, acoustic range, numerical simulation of sonar

UDC 621.396.96

Bibliography- 22 references
Received 25.04.2011

RENSIT, 2011, 3(1):3-17

  • Tikhonov VI. Statisticheskaya radiotekhnika [Statistical Radio-Engineering]. Moscow, Radio i svyaz' Publ., 1982, 624 p.
  • Poirier JL. Radio Science, 1968, 3(9):881-886.
  • Myasin EA, Kislov VYa, Bogdanov EV. Patent RU № 1125735, publ. 23.11.1984, prior. 22.06.1967 (in Russ.)
  • Kislov VYa, Zalogin NN, Myasin EA. Radiotekhnika i elektronika, 1979, 24(6):1118 (in Russ.).
  • Kislov VYa, Zalogin NN, Myasin EA. Radiotekhnika i elektronika, 1980, 25(10):2160 (in Russ.).
  • Kalinin VI, Zalogin NN, Kislov VYa. Radiotekhnika i elektronika, 1983, 28(10):2001 (in Russ.).
  • Belyaev RV, Zhernovenkov AS, Zalogin NN, Mel'nikov AI. Radiotekhnika i elektronika, 1996, 41(12):1484-1489 (in Russ.).
  • Myasin EA, Kotov VD, Andreev YuV. Tr. Vseross. Konf. «Sverkhshirokopolosnye signaly v radiolokatsii, svyasi i akustike» [Proc. of All-Rus. Conf. «Ultra-wideband signals in radar, communication and acoustics»]. Murom, MI VlSU Publ., 2003, p. 542.
  • Maksimov NA, Kislov VYa. Pis'ma v JTF, 1983, 9(16):979 (in Russ.).
  • Maksimov NA, Panas AI. Tr. Vseross. Konf. «Sverkhshirokopolosnye signaly v radiolokatsii, svyasi i akustike» [Proc. of All-Rus. Conf. «Ultra-wideband signals in radar, communication and acoustics»]. Murom, MI VlSU Publ., 2003, p. 432.
  • Zalogin NN, Kislov VV. Shirokopolosnye khaoticheskie signaly v radiotekhnicheskikh i informatsionnykh sistemakh [Broadband Chaotic Signals in Radio Engineering and Information Systems]. Moscow, Radiotekhnika Publ., 2006, 208 p.
  • Zalogin NN, Kalinkevich AA, Kirillin KA, Kislov VYa. Radiotekhnika i elektronika, 1990, 35(3):548-555 (in Russ.).
  • Aksenov V, Zalogin N, Kirillin K. Proc. Intern. Conf. “Radar 87”. London, 1987, p. 156.
  • Arkhipov LI. Ispol'zovanie shumovykh i shumopodobnykh signalov v sistemakh blizhney radiolokatsii [The use of noise and noise-type signals in the systems of the near-radar]. Мoscow, TSNII ITEI Publ., 1975, 167 p.
  • Zalogin NN, Kalinin VI, Myasin EA et al. Tr. Vseross. Konf. «Sverkhshirokopolosnye signaly v radiolokatsii, svyasi i akustike» [Proc. of All-Rus. Conf. «Ultra-wideband signals in radar, communication and acoustics»]. Murom, MI VlSU Publ., 2003, p. 411.
  • Zalogin NN, Kalinkevich AA, Kirillin KL. Radiotekhnika i elektronika, 1993, 38(2):278 (in Russ.).
  • Potemkin VG. Sistema MATLAB [MATLAB system]. Мoscow, Dialog-MIFI Publ., 1997, 350 p.
  • Rudakov PI, Safonov VI. Obrabotka signalov i izobrazheniy. MATLAB 5.x [Processing of signals and images. MATLAB 5.x]. Мoscow, Dialog-MIFI Publ., 2000, 416 p.
  • Alekseev EP, Chesnokova OV. MATLAB 7. Moscow, NT Press, 2006, 464 p. (in Russ.).
  • Zalogin NN, Sknarya AV. Radiotekhnika i elektronika, 2008, 53(10):1307 (in Russ.).
  • Zalogin NN, Kolesov VV, Sknarya AV. Tr. 4 Mezhd. Konf. «Issledovanie, razrabotka i primenenie vysokikh tekhnologiy v promyshlennosti» [Proc. 4th Intern. Conf. «Research, development and application of high technologies in industry»]. St.Petersburg, 2007, p. 234.
  • Zalogin NN, Sknarya AV. Tr. 14 Mezhd. Konf. «Radiolokatsiya, navigatsya i svyaz'» [Proc. 14th Intern. Conf. «Radiolocation, navigation, communication»]. Voronezh, SAKVOEE, 2008, p. 47.

Full-text electronic version of this article - web site http://elibrary.ru