Vol. 7, №2, 2015


1,2,3Shunhong Zhang, 3Jian Zhou, 1,2,3Qian Wang, 4,5Xiaoshuang Chen, 6Yoshiyuki Kawazoe, 3Puru Jena

1Center for Applied Physics and Technology, College of Engineering
Peking University, Beijing 100871, China
2Collaborative Innovation Center of Inertial Fusion Sciences and Applications, Ministry of Education
Beijing 100871, China
3Department of Physics, Virginia Commonwealth University
Richmond, VA 23284 USA
4National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences
Shanghai 200083, China
5Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China
Hefei, Anhui 230026, China
6Institute for Materials Research, Tohoku University
Sendai, 980-8577, Japan

Received 15.11.2015
Abstract. A 2D metastable carbon allotrope, penta-graphene, composed entirely of carbon pentagons and resembling the Cairo pentagonal tiling, is proposed. State-of-the-art theoretical calculations confirm that the new carbon polymorph is not only dynamically and mechanically stable, but also can withstand temperatures as high as 1000 K. Due to its unique atomic configuration, penta-graphene has an unusual negative Poisson’s ratio and ultrahigh ideal strength that can even outperform graphene. Furthermore, unlike graphene that needs to be functionalized for opening a band gap, penta-graphene possesses an intrinsic quasi-direct band gap as large as 3.25 eV, close to that of ZnO and GaN. Equally important, penta-graphene can be exfoliated from T12-carbon. When rolled up, it can form pentagon-based nanotubes which are semiconducting, regardless of their chirality. When stacked in different patterns, stable 3D twin structures of T12-carbon are generated with band gaps even larger than that of T12-carbon. The versatility of penta-graphene and its derivatives are expected to have broad applications in nanoelectronics and nanomechanics.

Keywords: carbon allotrope, carbon pentagon, stability, negative Poisson’s ratio, electronic structure

PACS: 51.05.ue

Bibliography – 54 references

RENSIT, 2015, 7(2):191-207 DOI: 10.17725/rensit.2015.07.191
  • Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE. C60: Buckminsterfullerene. Nature, 1985, 318(6042):162-163.
  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430):603-605.
  • Novoselov KS, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696):666-669.
  • Charlier J-C, Rignanese G-M. Electronic structure of carbon nanocones. Phys Rev Lett, 2001, 86(26):5970-5973.
  • Jin C, Lan H, Peng L, Suenaga K, Iijima S. Deriving carbon atomic chains from graphene. Phys Rev Lett, 2009, 102(20):205501.
  • Li Y, Xu L, Liu H, Li Yu. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem Soc Rev, 2014, 43(8):2572-2586.
  • Bucknum MJ, Hoffmann R. A hypothetical dense 3,4-connected carbon net and related B2C and CN2 nets built from 1,4-cyclohexadienoid units. J Am Chem Soc, 1994, 116(25):11456-11464.
  • Zhang S, Wang Q, Chen X, Jena P. Stable three-dimensional metallic carbon with interlocking hexagons. Proc Natl Acad Sci USA, 2013, 110(47):18809-18813.
  • Malko D, Neiss C, Viñes F, Görling A. Competition for graphene: Graphynes with direction-dependent Dirac cones. Phys Rev Lett, 2012, 108(8):086804.
  • Mina M, Susumu O. Two-dimensional sp2 carbon network of fused pentagons: All carbon ferromagnetic sheet. Appl Phys Express, 2013, 6(9):095101.
  • Terrones H, et al. New metallic allotropes of planar and tubular carbon. Phys Rev Lett, 2000, 84(8):1716-1719.
  • Xu L-C, et al. Two dimensional Dirac carbon allotropes from graphene. Nanoscale, 2014, 6(2):1113-1118.
  • Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat Chem, 2013, 5(7):572-576.
  • Deza M, Fowler PW, Shtogrin M, Vietze K. Pentaheptite modifications of the graphite sheet. J Chem Inf Comput Sci, 2000, 40(6):1325-1332.
  • Tan Y-Z, Xie S-Y, Huang R-B, Zheng L-S. The stabilization of fused-pentagon fullerene molecules. Nat Chem, 2009, 1(6):450-460.
  • Prinzbach H, et al. Gas-phase production and photoelectron spectroscopy of the smallest fullerene, C20. Nature, 2000, 407(6800):60-63.
  • Wang Y, et al. Template effect in the competition between Haeckelite and graphene growth on Ni(111): Quantum chemical molecular dynamics simulations. J Am Chem Soc, 2011, 133(46):18837-18842.
  • Zhao Z, et al. Tetragonal allotrope of group 14 elements. J Am Chem Soc, 2012, 134(30):12362-12365.
  • Naguib M, Gogotsi Y. Synthesis of two-dimensional materials by selective extraction. Acc Chem Res, 2015, 48(1):128-135.
  • Naguib M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater, 2011, 23(37):4248-4253.
  • Ressouche E, Simonet V, Canals B, Gospodinov M, Skumryev V. Magnetic frustration in an iron-based Cairo pentagonal lattice. Phys Rev Lett, 2009, 103(26):267204.
  • Menéndez-Proupin E, Montero-Alejo AL, García de la Vega JM. Ultrathin carbon nanotube with single, double, and triple bonds. Phys Rev Lett, 2012, 109(10):105501.
  • Merz KM, Hoffmann R, Balaban AT. 3,4-connected carbon nets: Through-space and through-bond interactions in the solid state. J Am Chem Soc, 1987, 109(22):6742-6751.
  • Schmidt CL, Dinnebier R, Wedig U, Jansen M. Crystal structure and chemical bonding of the high-temperature phase of AgN3. Inorg Chem, 2007, 46(3):907–916.
  • Sheng X-L, Yan Q-B, Ye F, Zheng Q-R, Su G. T-carbon: A novel carbon allotrope. Phys Rev Lett, 2011, 106(15):155703.
  • Andrew RC, Mapasha RE, Ukpong AM, Chetty N. Mechanical properties of graphene and boronitrene. Phys Rev B, 2012, 85(12):125428.
  • Marianetti CA, Yevick HG. Failure mechanisms of graphene under tension. Phys Rev Lett, 2010, 105(24):245502.
  • Si C, Duan W, Liu Z, Liu F. Electronic strengthening of graphene by charge doping. Phys Rev Lett, 2012, 109(22):226802.
  • Ding Y, Wang Y. Density functional theory study of the silicene-like SiX and XSi3 (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties. J Phys Chem C, 2013, 117(35):18266-18278.
  • Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887):385-388.
  • Burns S. Negative Poisson’s ratio materials. Science, 1987, 238(4826):551.
  • Jiang J-W, Park HS. Negative Poisson’s ratio in single-layer black phosphorus. Nat Commun, 2014, 5:4727.
  • Greaves GN, Greer AL, Lakes RS, Rouxel T. Poisson’s ratio and modern materials. Nat Mater, 2011, 10(11):823-837.
  • Schreiner PR, et al. Overcoming lability of extremely long alkane carbon-carbon bonds through dispersion forces. Nature, 2011, 477(7364):308-311.
  • Lu S, Wang Y, Liu H, Miao MS, Ma Y. Self-assembled ultrathin nanotubes on diamond (100) surface. Nat Commun, 2014, 5:3666.
  • Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys, 2003, 118(18):8207-8215.
  • Heyd J, Scuseria GE, Ernzerhof M. Erratum: "Hybrid functionals based on a screened Coulomb potential." J Chem Phys, 2006, 124(21):219906.
  • Savini G, Ferrari AC, Giustino F. First-principles prediction of doped graphane as a high-temperature electron-phonon superconductor. Phys Rev Lett, 2010, 105(3):037002.
  • Charlier J-C, Blase X, Roche S. Electronic and transport properties of nanotubes. Rev Mod Phys, 2007, 79(2):677-732.
  • Ayala P, Arenal R, Loiseau A, Rubio A, Pichler T. The physical and chemical properties of heteronanotubes. Rev Mod Phys, 2010, 82(2):1843–1885.
  • Mao WL, et al. Bonding changes in compressed superhard graphite. Science, 2003, 302(5644):425–427.
  • Murnaghan FD. The compressibility of media under extreme pressures. Proc Natl Acad Sci USA, 1944, 30(9):244–247.
  • Nguyen MC, Zhao X, Wang C-Z, Ho K-M. sp3-hybridized framework structure of group-14 elements discovered by genetic algorithm. Phys Rev B, 2014, 89(18):184112.
  • Davydov IV, Podlivaev AI, Openov LA. Anomalous thermal stability of metastable C20 fullerene. Phys Solid State, 2005, 47(4):778-784.
  • Niu H, et al. Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes. Phys Rev Lett, 2012, 108(13):135501.
  • Blase X, Gillet P, San Miguel A, Mélinon P. Exceptional ideal strength of carbon clathrates. Phys Rev Lett, 2004, 92(21):215505.
  • Riedl C, Coletti C, Iwasaki T, Zakharov AA, Starke U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys Rev Lett, 2009, 103(24): 246804.
  • Sołtys J, Piechota J, Ptasinska M, Krukowski S. Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) surface. J Appl Phys, 2014, 116(8):083502.
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16):11169-11186.
  • Blöchl PE. Projector augmented-wave method. Phys Rev B Condens Matter, 1994, 50(24):17953-17979.
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18):3865–3868.
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13(12):5188–5192.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys, 1984, 81(1):511-519.
  • Togo A, Oba F, Tanaka I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys Rev B, 2008, 78(13): 134106.

Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/142/7(2)-191-207e.pdf