Vol. 7, №2, 2015
РусскийEnglish

NANOSYSTEMS



STUDY OF ELECTRICAL CONDUCTIVITY OF THERMALLY REDUCED GRAPHENE OXIDE
Efim P. Neustroev, Mariya V. Nogovitsyna, Yuliya S. Solovyova, Grigory N. Alexandrov, Еvgokiya К. Burtseva

North-Eastern Federal University named after M.K. Ammosov, http://www.s-vfu.ru
677000 Yakutsk, Russian Federation
ep.neustroev@s-vfu.ru

Received 07.09.2015
Abstract. Graphene oxide under study was obtained by a modified Hummers method. Samples were subjected to thermal reduction in a temperature range from 200° to 300°C in an atmosphere of argon and in vacuum. Results of measurements of volt-ampere characteristics of the samples in a temperature range from 80 to 300 K showed the presence of linear dependence of logarithm of current on a reciprocal temperature above 160-180 K. At temperatures below these values a power dependence of current on the temperature is observed. In this paper an assumption is made that both a Mott variable-range hopping (VRH) and the Efros-Shklovskii (ES-) VRH mechanism affect the electrical conductivity of graphene oxide in the range from 10 to 180 K. A contribution of each mechanism depends on conditions of carrying out the thermal reduction.

Keywords: materials for nanoelectronics, graphene oxide, thermal reduction, current-voltage curves, temperature dependence of resistance, mechanism of electrical conductivity, thermal activation mechanism, mechanism of the variable-range hopping

PACS: 53.039

Bibliography – 17 references

RENSIT, 2015, 7(2):162-167 DOI: 10.17725/rensit.2015.07.162
REFERENCES
  • Pei S, Cheng Hu-M. The reduction of graphene oxide. Carbon, 2012, 50(9):3210-3228.
  • Park W, Hu J, Jauregui LA, Ruan X, Chen YP. Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites. Applied Physics Letters, 2014, 104:113101(1-4).
  • Zhu M, Li X, Guo Y, Li X, Sun P, Zang X, Wang K, Zhong M, Wud D, Zhu H. Vertical junction photodetectors based on reduced graphene oxide/silicon Schottky diodes. Nanoscale, 2014, 6:4909-4914.
  • Lee Yu-Ying, Tu Kun-Hua, Yu Chen-Chieh, Li Shao-Sian, Hwang Jeong-Yuan, Lin Chih-Cheng, Chen Kuei-Hsien, Chen Li-Chyong, Chen Hsuen-Li, and Chen Chun-Wei. Top Laminated Graphene Electrode in a Semitransparent Polymer Solar Cell by Simultaneous Thermal Annealing/Releasing Method. ACSNano, 2011, 5(8):6564-6570.
  • El-Kadya MF, Ihns M, Li M, Hwanga JY, Mousavi MF, Chaneya L, Lecha AT, and Kaner RB. Engineering three-dimensional hybrid supercapacitors and micro supercapacitors for high-performance integrated energy storage. PNAS, 2015, 112(14):4233-4238.
  • Obreja VVN. Supercapacitors specialities - Materials review. Review on Electrochemical Storage Materials and Technology. AIP Conf. Proc., 2014, 1597:98-120.
  • Muchharla B, Narayanan TN., Balakrishnan K, Ajayan PM, Talapatra S. Temperature dependent electrical transport of disordered reduced graphene oxide. 2D Materials, 2014, 1:011008(1-5).
  • Joung D, Khondaker SI. Efros-Shklovskii variable-range hopping in reduced graphene oxide sheets of varying carbon sp2 fraction. Physical Review D, 2012, 86:235423 (1-8).
  • Eda G, Mattevi C, Yamaguchi H, Kim HK, Chhowalla M. Insulator to Semimetal Transition in Graphene Oxide. J. Phys. Chem. C, 2009, 113:15768-15771.
  • Kaiser AB, Gómez-Navarro С, Sundaram RS, Burghard M, Kern K. Electrical Conduction Mechanism in Chemically Derived Graphene Monolayers. Nano Letters, 2009, 9(5):1787-1792.
  • Venugopal G, Krishnamoorthya K, Mohanc R, Kim SJ. An investigation of the electrical transport properties of graphene-oxide thin films. Materials Chemistry and Physics, 2012, 132:29-33.
  • Shklovskii BI, Efros AL. Elektronnye svojstva legirovannyh poluprovodnikov. [Electronic properties of doped semiconductors]. Moscow, Nauka Publ., 1979, 416 p.
  • Mott N, Devis Je. Elektronnye processy v nekristallicheskih veshhestvah. [Electronic processes in non-crystalline materials]. Moscow, Mir Publ., 1982, t.1, 368 p.
  • Alexandrov GN, Smagulova SA, Kapitonov AN, Vasil’eva FD, Kurkina II, Vinokurov PV, Timofeev VB, Antonova IV. Tonkie plenki chastichno vosstanovlennogo oksida grafena [Thin Partially Reduced Oxide–Graphene Films: Structural, Optical, and Electrical Properties]. Nanotechnologies in Russia, 2014, 9(7-8):363-368 (in Russ.).
  • Dıez-Betriu X, Alvarez-Garcıa S, Botas C, Alvarez P, Sanchez-Marcos J, Prieto C, Menendezb R, de Andres A. Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films. J. Mater. Chem. C, 2013, 1:6905-6912.
  • Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Letters, 2008, 8(1):36-41.
  • Huang H, Li Z, She J, Wang W. Oxygen density dependent band gap of reduced graphene oxide. J. Appl. Phys., 2012, 111:054317(1-4).


Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/142/7(2)-162-167e.pdf