Vol. 7, №2, 2015
РусскийEnglish

NANOSYSTEMS



THERMODYNAMIC CHARACTERISTICS AND ATOMIC MECHANISMS OF HYDROGENATION-DEHYDROGENATION OF GRAPHENE STRUCTURES
Yuri S. Nechaev, Varvara P. Filippova

Bardin Central Research Institute for Ferrous Metallurgy, http://www.chermet.net/
105005 Moscow, Russian Federation
yuri1939@inbox.ru, varia.filippova@yandex.ru

Received 14.09.2015
Abstract. The results of the study (by methods of thermodynamic analysis of a number of the most cited experimental and theoretical data) characteristics of the thermal stability of hydrogenated mebrane and epitaxial graphenes, as well as the atomic mechanisms of the processes of hydrogention and dehydrogenation, are presented. A discrepancy of some theoretical data for graphane with the results of thermodynamic "verification" is shown. It is considered the rate-limiting stages and atomic mechanisms of processes of atomic hydrogen chemisorption with membrane and epitaxial graphenes, relevance to the problem of the efficient and safety storage of hydrogen in the fuel cell powered ecological vehicles.

Keywords: free-standing graphene membranes, graphanes, epitaxial graphenes, hydrogenation and dehydrogenation, the atomic mechanisms, the thermal stability characteristics, the hydrogen on-board storage problem

PACS: 61.46. ± w, 61.48.+c, 68.43. ± h, 89.30. ± g

Bibliography – 70 references

RENSIT, 2015, 7(2):145-152 DOI: 10.17725/rensit.2015.07.145
REFERENCES
  • Akiba E Hydrogen related R&D and hydrogen storage materials in Japan. In: Materials of Int. Hydrogen Research Showcase, 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html.
  • Balog R, Jørgensen B, Wells J, Lægsgaard E, Hofmann P, Besenbacher F, Hornekær L (2009). Atomic hydrogen adsorbate structures on graphene. J. Am. Chem. Soc., 131(25):8744-8745.
  • Banhart F, Kotakovski J, Krasheninnikov AV (2011). Structural defects in graphene (Review). ACS Nano, 5(1):26-41.
  • Bauschlicher CW(Jr), So CR (2002). High coverages of hydrogen on (10.0), (9.0) and (5.5) carbon nanotubes. Nano Lett., 2(4):337-341.
  • Bazarov IP (1976). Thermodynamics. Moscow, Vysshaya Shkola Publ.
  • Bocquet FC, Bisson R, Themlin JM, Layet JM, Angot T (2012). Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001). Phys. Rev. B - Condensed Mater. Phys. 85(20):article # 201401.
  • Boukhvalov DW, Katsnelson MI, Lichtenstein AI (2008). Hydrogen on graphene: total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B., 77:035427-1-7.
  • Brito WH, Kagimura R, Miwa RH (2011).Hydrogen grain boundaries in grapene. Appl. Phys. Lett., 98(21): article # 213107.
  • Castellanos-Gomes A, Arramel, Wojtaszek M, Smit RHM, Tombros N, Agrait N, Van Wees BJ, Rubio-Bollinger G (2012). Electronic inhomogeneities in graphene: the role of the substrate interaction and chemical doping. Boletin Grupo Español Carbón, 25:18-22.
  • Castellanos-Gomez A, Smit RHM, Agraït N, Rubio-Bollinger G (2012). Spatially resolved electronic inhomogeneities of graphene due to subsurface charges. Carbon, 50(3):932-938.
  • Castellanos-Gomez A,Wojtaszek M, Arramel, Tombros N,Van Wees BJ (2012). Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. Small, 8(10):1607-1613.
  • Chernozatonskii LA, Mavrin BN, Sorokin PB (2012). Determination of ultrathin diamond films by Raman spectroscopy. Physica Status Solidi B., 249(8):1550-1554.
  • Cockayne E, Rutter GM,Guisinger NP, Crain JN, First PN, Stroscio JA (2011). Grain boundary loops in graphene. Phys. Rev. B- Condensed Matter Mater. Phys., 83(19):article # 195425.
  • Data J, Ray NR, Sen P, Biswas HS, Wogler EA (2012). Structure of hydrogenated diamond-like carbon by Micro-Raman spectroscopy. Mater. Lett., 71:131-133.
  • Davydov SYu, Lebedev AA (2012). Epitaxial single-layer graphene on the SiC substrate. Material Science Forum, 717-720:645-648.
  • DOE targets for on-board hydrogen storage systems for light-duty vehicles (2012). (http://wwwl.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/ targets_onboard_hydro_storage.pdf.).
  • Dzhurakhalov AA, Peeters FM (2011). Structure and energetics of hydrogen chemisorbed on a single graphene layer to produce graphane. Carbon, 49:3258-3266.
  • Eckmann A, Felten A, Mishchenko A, Brintell L, Krupke R, Novoselov KS, Casiraghi C (2012). Probing the nature of defects in graphene by Raman spectroskopy. Nano Lett., 12(8):3925-3930.
  • Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009). Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science, 323(5914):610-626.
  • Geim AK, Novoselov KS (2007). The rise of graphene. Nature Mater., 6(3):183-191.
  • Goler S, Coletti C, Piazza V, Pingue P, Colangelo F, Pallegrini V, Emtsev KV, Forti S, Starke U, Beltram F, Heun S (2013). Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene. Carbon, 51(1):249-254.
  • Gupta BK, Tiwari RS, Srivastava ON (2004). Studies on synthesis and hydrogenation behavior of graphitic nanofibers prepared through palladium catalyst assisted thermal cracking of acetylene. J. Alloys Compd., 381:301-308.
  • Han SS, Jung H, Jung DH, Choi S-H, Park N (2012). Stability of hydrogenation states of graphene and conditions for hydrogenspillover. Phys. Rev. B – Condens. Matter. Mater. Phys., 85(15):article # 155408.
  • Hornekaer L, Šljivančanin Ž, Xu W, Otero R, Rauls E, Stensgaard I, Lægsgaard E, Hammer B, Besenbacher F (2006). Metastable structures and recombination pathways for atomic hydrogen on the graphite (0001) surface. Phys. Rev. Lett., 96:article # 156104.
  • Jiang D, Cooper VR, Dai S (2009). Porous graphene as the ultimate membrane for gas separation. Nano Lett., 9: 4019-4024.
  • Jones JD, Morris CF, Verbeck GF, Perez JM (2012). Oxidative pit formation in pristin, hydrogenated and dehydrogenated graphene. Appl. Surface Sci. 10: 1-11.
  • Karapet’yants MK, Karapet’yants ML (1968). Fundamental Thermodynamic Constants of Inorganic and Organic Substances. Moscow, Khimiya Publ.
  • Khusnutdinov NR (2012). The thermal Casimir–Polder interaction of an atom with a spherical plasma shell. J. Phys. A: Math. Theor., 45:265-301 [arXiv:1203.2732].
  • Kim K, Lee Z, Regan W, Kisielowski C, Crommie MF, Zettl A (2011). Grain boundary mapping in polycrystalline graphene. ACS Nano., 5(3):2142-2146.
  • Koepke JC, Wood JD, Estrada D, Ong ZY, He KT, Pop E, Lyding JW (2013). Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: A scanning tunneling microscopy study. ACS Nano., 7(1):75-86.
  • Lebegue S, Klintenberg M, Eriksson O, Katsnelson MI (2009). Accurate electronic band gap of pure and functionalized graphane from GW calculations. Phys. Rev. B – Condensed Matter Mater. Phys., 79(24): article # 245117.
  • Lee C, Wei X, Kysar JW,Hone J(2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385-388.
  • Lee MJ, Choi JS, Kim JS, Byun I-S, Lee DH, Ryu S, Lee C, Park BH (2012). Characteristics and effects of diffused water between graphene and a SiO2 substrste. Nano Res., 5(10):710-717.
  • Lehtinen PO, Foster AS, Ma Y, Krasheninnikov AV, Nieminen RM (2004). Irradiation-induced magnetism in graphite: A density functional study. Phys. Rev. Lett., 93:187202-1-4.
  • Luo Z, Yu T, Kim KJ, Ni Z, You Y, Lim S, Shen Z, Wang S, Lin J (2009). Thickness-dependent reversible hydrogenation of graphene layers. ACS Nano., 3(7):1781-1788.
  • Nechaev YuS (2010). Carbon nanomaterials, relevance to the hydrogen storage problem. J. Nano Res., 12:1-44.
  • Nechaev YuS, Veziroglu, TN (2013). Thermodynamic aspects of the stability of the graphene/graphane/hydrogen systems, relevance to the hydrogen on-board storage problem. Adv. Mater. Phys. Chem., 3:255-280.
  • Openov LA, Podlivaev AI (2010). Thermal desorption of hydrogen from graphane. Tech. Phys. Lett., 36(1): 31-33.
  • Openov LA, Podlivaev AI (2012). Thermal stability of single-side hydrogenated graphene. Tech. Phys., 57(11):1603-1605.
  • Palerno V (2013). Not a molecule, not a polymer, not a substrate the many faces of graphene as a chemical platform. Chem. Commun., 49(28):2848-2857.
  • Park C, Anderson PE, Chambers A, Tan CD, Hidalgo R, Rodriguez NM (1999). Further studies of the interaction of hydrogen with graphite nanofibers. J. Phys. Chem. B., 103:10572-10581.
  • Pimenova SM, Melkhanova SV, Kolesov VP, Lobach AS (2002). The enthalpy of formation and C-H bond enthalpy hydrofullerene C60H36. J. Phys. Chem. B., 106(9):2127-2130.
  • Pinto HP, Leszczynski J (2014). Fundamental properties of graphene. In: Handbook of Carbon Nano Materials., Volume 5 (Graphene – Fundamental Properties), Eds. F. D’Souza, K. M. Kadish, Word Scientific Publishing Co, New Jersey et al., pp. 1-38.
  • Podlivaev AI, Openov LA (2011). On thermal stability of graphone. Semiconductors, 45(7):958-961.
  • Pujari BS, Gusarov S, Brett M, Kovalenko A (2011). Single-side-hydrogenated graphene: Density functional theory predictions. Phys. Rev. B., 84:041402-1-6.
  • Riedel C, Coletti C, Iwasaki T, Starke U (2010). Hydrogen intercalation below epitaxial graphene on SiC(0001). Mater. Sci. Forum., 645-648:623-628.
  • Riedel C, Coletti C, Iwasaki T, Zakharov AA, Starke U (2009). Quazi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett., 103:246804-1-4.
  • Sessi P, Guest JR, Bode M, Guisinger NP (2009). Pattering graphene at the nanometer scale via hydrogen desorption. Nano Lett., 9(12):4343-4347.
  • Showcase 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html
  • Sofo JO, Chaudhari AS, Barber GD (2007). Graphane: A two-dimensional hydrocarbon. Phys. Rev. B., 75:153401-1-4.
  • Sorokin PB, Chernozatonskii LA (2013). Graphene based semiconductor nanostructures. Physics-Uspekhi, 56(2):113-132.
  • Stolyarova E, Stolyarov D, Bolotin K, Ryu S, Liu L, Rim KT, Klima M, Hybrtsen M, Pogorelsky I, Pavlishin I, Kusche K, Hone J, Kim P, Stormer HL, Yakimenko V, Flynn G (2009). Observation of graphene bubbles and effective mass transport under graphene films. Nano Lett., 9(1):332-337.
  • Trunin RF, Urlin VD, Medvedev AB (2010). Dynamic compression of hydrogen isotopes at megabar pressures. Phys. Usp., 53:605-622.
  • Waqar W, Klusek Z, Denisov E, Kompaniets T, Makarenko I, Titkov A, Saleem A (2000). Effect of atomic hydrogen sorption and desorption on topography and electronic properties of pyrolytic graphite. Electrochemical Soc. Proc., 16:254-265.
  • Waqar Z (2007). Hydrogen accumulation in graphite and etching of graphite on hydrogen desorption. J. Mater. Sci., 42(4):1169-1176.
  • Watcharinyanon S, Virojanadara C, Osiecki JR, Zakharov AA, Yakimova R, Uhrberg RIG, Johanson LI (2011). Hydrogen intercalation of graphene grown 6H-SiC(0001). Surface Sci., 605(17-18):1662-1668.
  • Wojtaszek M, Tombros N, Garreta A, Van Loosdrecht PHM,Van Wees BJ (2011). A road to hydrogenating graphene by a reactive ion etching plasma. J. Appl. Phys., 110(6):article # 063715.
  • Xiang H, Kan E, Wei S-H, Whangbo MH, Yang J (2009). “Narrow” graphene nanoribbons made easier by partial hydrogenation. Nano Lett., 9(12):4025-4030.
  • Xiang HJ, Kan EJ, Wei S-H, Gong XG, Whangbo M-H (2010). Thermodynamically stable single-side hydrogenated graphene. Phys. Rev. B., 82:165425-1-4.
  • Xie L, Wang X, Lu J, Ni Z, Luo Z, Mao H, Wang R, Wang Y, Huang H, Qi D, Liu R, Yu T, Shen Z, Wu T, Peng H, Oezyilmaz B, Loh K, Wee ATS, Ariando S,Chen W (2011). Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Appl. Phys. Lett., 98(19):article # 193113.
  • Yakobson BI, Ding F (2011). Observational geology of graphene, at the nanoscale (Review). ACS Nano, 5(3):1569-1574.
  • Yang FH, Yang RT (2002). Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes. Carbon, 40:437-444.
  • Yazyev OV, Helm L (2007). Defect-induced magnetism in graphene. Phys. Rev. B., 75:125408-1-5.
  • Yazyev OV, Louie SG (2010).Topological defects in graphene: Dislocations and grain boundaries. Phys. Rev. B - Condensed Matter Mater. Phys., 81(19): article # 195420.
  • Zhang J, Zhao J (2013). Structures and electronic properties of symmetric and nonsymmetric graphene grain boundaries. Carbon, 55:151-159.
  • Zhang J, Zhao J, Lu J (2012). Intrinsic strength and failure behaviours of graphene grain boundaries. ACS Nano, 6(3):2704-2711.
  • Zhang T, Li X, Gao H (2014). Defects controlled wrinkling and topological design in graphene. J. Mech. Phys. Solids, 67:2-13.
  • Zhao X, Outlaw RA, Wang JJ, Zhu MY, Smith GD, Holloway BC (2006). Thermal desorption of hydrogen from carbon nanosheets. J. Chem. Phys., 124:194704-1-6.
  • Zhou J, Wang Q, Sun Q, Chen XS, Kawazoe Y, Jena P (2009). Ferromagnetism in semihydrogenated graphene sheet. Nano Letters, 9(11):3867-3870.
  • Zuettel A (2011). Hydrogen the future energy carrier. In: Materials of Int. Hydrogen Research Showcase 2011, University of Birmingham, UK, April 13-15, 2011; the UK-SHEC website: http://www.uk-shec.org.uk/uk-shec/showcase/ShowcasePresentations.html.


Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/142/7(2)-145-152e.pdf