Vol. 7, №2, 2015


Nikolay I. Alekseyev, Viktor V. Luchinin

St.-Petersburg ElectroTechnical University LETI, http://www.eltech.ru
197376 St.-Petersburg, Russian Federation

Received 13.09.2015
Abstract. The silicone carbide SiC faceted surface is optimized with a viewpoint of producing high-crystallinity graphene with the possibly maximal bandgap. We considered the faceting folds, which appear in the course of splitting vicinal SiC (11−2n) face for the steps as the source of opening non-zero bandgap in the graphene. The structure with spatial period of ~30nm, where the lower estimation of ΔEg gives 0.2÷0.25eV, is offered as optimal for the practice. An approach to practical production of this structure is estimated.

Keywords: graphene, silicon carbide, simulation of synthesis, facetiously surface, bandgap, vicinal face

PACS: 68.65 Pq, 81.15

Bibliography – 12 references

RENSIT, 2015, 7(2):135-144 DOI: 10.17725/rensit.2015.07.135
  • Hass J, Varchon F, Milla’n-Otoya JE et al. Why Multilayer Graphene on 4H-SiC 000_1 Behaves Like a Single Sheet of Graphene. Phys. Rev. Lett., 2008, 100:125504–10.
  • Hara H, Sano Y, Arima K, Kagi K, Murata J, Kubota A, Mimura H, Yamauchi K. Catalyst-referred etching of silicon. Science and Technology of Advanced Materials, 2007, 8:162–165.
  • Fujii M, Tanaka S. Ordering Distance of Surface Nanofacets on Vicinal 4H-SiC(0001). Phys. Rev. Lett., 2007, 99:016102.
  • Davydov SY. On the charge transfer in the system of adsorbed molecules graphene monolayer–SiC-substrate. Semiconductors, 2011, 45(5):629-633 (in Russ.).
  • Davydov SY, Lebedev AA, Posrednik OV. Vvedenie v fiziku nanosystem [Introduction to physics of nanosystems]. S.-Petersburg, SPbGETU "LETI" Publ., 2009, 112 p.
  • Castro-Neto AH, Guinea F, Peres NM et al. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81:109. arXiv.org > cond-mat > arXiv:0709.1163.
  • Norimatsu W, Kusunoki M. Formation process of graphene on SiC(0001). Physica E, 2010, 42:691-694.
  • Alekseev NI, Luchinin VV, Charykov NA. Initial Stage of the Epitaxial Assembly of Graphene from Silicon Carbide and Its Simulation by Semiempirical Quantum Chemical Methods: Carbon Face. Russ.Journ.of Phys. Chem. A, 2013, 87(10):1709-1720 (in Russ.).
  • Alekseyev NI. Modelirovanie protsessov formirovaniya uglerodnykh nanomaterialov. Grafen, nanotrubki, fullereny [Simulation of processes of formation of carbon nanomaterials. Graphene, nanotubes, fullerenes]. S.-Petersburg, SPbGETU "LETI" Publ., 2014, 292 p.
  • Hicks J, Shepperd K, Wang F, Conrad EH. The structure of graphene grown on the SiC (000—1) surface. J.Phys.D. Applied Physics, 2012, 45(15):154002.
  • Brenner DW. Empirical potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition on Diamond Films. Physical Review B, 1990, 42:9458-9471.
  • Popov VV, Polischuk OV, Davoyan AR, Ryzhii V, Otsuji T, Shur MS. Plasmonic terahertz lasing in an array of Gr nanocavities. Phys. Rev. B, 2012, 86:195437.

Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/142/7(2)-135-144e.pdf