Vol. 7, №1, 2015


Lkhamsuren Enkhtor

National University of Mongolia, School of Arts and Science, Department of Physics, http://www.num.edu.nm
210646 Ulaanbaatar, Mongolia
Valentin М. Silonov
Lomonosov Moscow State University, Faculty of Physics, Department of Solid State Physics, http://www.phys.msu.ru
119991 Moscow, Russian Federation

Received 20.04.2015
Abstract. A review of theoretical and experimental investigations of elastic constants of metals and alloys is done. It is considered method of calculations of force and elastic constants of metals by using model potential of Heine-Abarenkov-Animalu within pseudopotential theory. Thus, it is paid especially attention to methods of calculations of elastic constants, in which established a relation between force constants and elastic constants according a long wave approximation. Shown, that pseudopotential method allows to calculate force and elastic constants of metals and alloys.

Keywords: metals, alloys, elastic constants,dynamical matrix, force constants, pseudopotential method

PACS: 61.10.Eq

Bibliography – 65 references

RENSIT, 2015, 7(1):68-86 DOI: 10.17725/rensit.2015.07.068
  • Born M. and Huang K. Dynamical Theory of Crystal Lattice. Oxford University Press, New York, 1954, 488 p.
  • Squires GL. The relation between the interatomic forces and the frequencies for symmetry phonons in cubic crystals. Arkhiv Physics, 1963, 25:21-32.
  • Gilat G, Nicklow RM. Normal Vibrations in Aluminum and Derived Thermodynamic Properties. Phys.Rev., 1966, 143(2):487-494.
  • De Launay J. The theory of specific heats and lattice vibrations. Solid State Physics, 1956, 2:220-303.
  • Krivoglaz MA. Diffuznoe rasseyanie rentgenovskikh luchey i neytronov na fluktuatsionnykh neodnorodnostyakh v neideal'nykh kristallakh [Diffuse X-ray and neutrons scatterings on fluctuational inhomogenities in nonideal crystals]. Kiev, Naukova dumka Publ., 1984, 288 p.
  • Brockhouse BN, Arase T, Gaglioti G, Rao KR, Woods AD. B. Crystal Dynamics of Lead.I. Dispersion Curves at 100K. Phys. Rev., 1962, 128(3):1099-1120.
  • Dulmaa A, Tsogbadrah N, Galbadrah R. The calculation of the elastic constants of alpha iron. Scientists Transactions Mongolian State University, 2015, 25(9):35-38.
  • Minkewitz VJ, Shirane G, Narans R. Phonon Dispersion Relation for Iron. Phys. Rev., 1967, 162:528-531.
  • Rayne JA, Chandrasekhar BS. Elastic Contants of Iron from 4.2 to 300K. Phys. Rev., 1961, 122(6):1714-1716.
  • Warren BE. X-ray Diffraction. MIT. Adison-Wesley PC, 1968, 377 p.
  • Walker CB. X-Ray Study of Lattice Vibrations in Aluminum. Phys.Rev., 1956, 103:547-558.
  • Shyu WM, Gaspari GD. Screened Interionic Potential of the Simple Metals. Phys.Rev., 1968, 170:687-693.
  • Shyam R, Upadhyaya SC, Upadhyaya JC. First-Principles Calculation of the Lattice Dynamics of the Co0.92Fe0.08 Alloy. Phys.Status Solidi B, 1990, 161:565-574.
  • Khanna RN, Rathore RP.S. Phonon dispersion in Alkali Metals. Nuovo cimento, 1979, 54B, (1):171-184.
  • Leybfrid G. Mikroskopicheskaya teoriya mekhanicheskikh i teplovykh svoystv kristallov [Microscopic theory of mechanical and thermal properties of crystals]. Moscow, GIFML Publ., 1963, 312 p.
  • Portnoy KI, Bogdanov VI, Fuks DL. Raschet vzaimodeystviya i stabilnosti faz [Calculation of the interaction and phase stability]. Moscow, Metallurgiya Publ., 1981, 248 p.
  • Enkhtur L, Silonov VM. Metodika rascheta uprugikh postoyannykh schelochnykh metallov [Calculating method of the elastic constants of alkali metals.]. Izvestiya RAN Ser. Fiz., 2014, 78(11):1431–1436 (in Russ.).
  • Enkhtor L, Silonov VM, Galbadrakh R. New general equation for calculations of elements of dynamical matrix and elastic constants of BCC and FCC metals. IJARPS, 2015, 2(4):10-14.
  • Animalu AOE, Heine V. The screened potential for 25 elements. Phil.Mag., 1965, 12(20):1249-1270.
  • Animalu AOE. Electronic structure of transition metals.1. Phys.Rev., 1973, 8(8):3542-3554.
  • Animalu AOE. The total electronic band structure energy for 29 elements. Proc.Roy. Soc., 1966, A294:376-392.
  • Moore CE. Atomic energy levels. National Bureau of Standarts. Washington D.C. 1949, Vols.I, II and III.
  • Silonov VM. Tablitsy formfaktorov psevdopotentsialov Animalu [Tables of form factors of Animalu's pseudo-potentials]. Dep. VINITI, 1976, N 1171, 25 p. (in Russ.).
  • Upadhyaya SC, Upadhyaya JC, Shyam R. Model-potential study of the lattice dynamics and elastic constants of the Ni0.55Pd0.45 alloy. Phys.Rev., 1991, 44:122-129.
  • Rayne JA. Elastic Constants of Palladium from 4.2-300K. Phys. Rev., 1960, 118:1545-1549.
  • Ghatak AK, Kothari LS. Introduction to Lattice Dynamics. London, Addison Wesley, 1972, 234p.
  • Singh N. Phonon dispersion curves in iron-based fcc alloys using microscopic force constants. Phys. Rev. B, 1990, 42(14):8882-8884.
  • Harrison WA, Wills JM. Interionic interaction in simple metals. Phys.Rev. B, 1982, 35:5007-5017.
  • Singh N, Banger NS, Singh SP. Phonon spectra and isothermal elastic constants of transition metals: A dynamical treatment. Phys. Rev. B, 1988, 38(11):7415-7420.
  • Bacon B, Smith SC. Single crystal elastic constants of silver and silver alloys. Acta metall., 1956, 4:337-341.
  • Goens E. Hauptelastizitatskonstanten des einkristalls fon kupfer, gold and blei. Physikalische Zeitschrift., 1936, 37:321-327.
  • Moriarty JA. Total Energy of Copper, Silver,and Gold. Phys. Rev.B, 1972, 6(4):1239-1252.
  • Khwaja FA, Razmi MSK. Calculation of Binding Energies and Elastic Constants of Cu, Ag, and Au Using a One-Parameter Model Potential. Phys. Status Solidi B, 1986, 138:K95-99.
  • Silonov VM, Enkhtur L. Blizhniy poryadok v tverdykh rastvorakh Fe-5 at.%Re [Short-range order in solid solutionsFe-5 ат.% Re]. Vestnik Moskovskogo universiteta. Ser. Fiz. Astr., 1997, 3:37-38 (in Russ.).
  • Rayne JA, Chandrasekhar BS. Elastic Constants of Iron from 4.2 to 300K. Phys. Rev., 1961, 122(6):1714-1716.
  • Leonov I, Poletaev AI, Anosimov VI, Vollhardt DV. Calculated phonon spectra of paramagnetic iron at the α-γ phase transition. Phys. Rev. B, 2012, 85:020401(R)-1-4.
  • Zaretsky J, Stassis C. Lattice dynamics of γ-Fe. Phys. Rev. B, 1987, 35(9):4500-4502.
  • Singh N. Lattice Dynamics of γ-Iron at 1428K. Phys. Stat. Sol. B, 1989, 156:K33-K36.
  • Ashcroft NW. Electron-ion pseudopotentials in metals. Phys.Letters., 1966, 23:48-50.
  • Ashcroft NW, Langreth DC. Compressibility and binding energy of the simple metals. Phys. Rev., 1967, 155:682-685.
  • Nash HC, Smith CS. Single-crystal elastic constants of litium. J. Phys. Chem. Solids, 1959, 9:113-118.
  • You Xie, Jiang-Min Zhang. Atomistic simulation of phonon dispersion for body-centered cubic alkali metals. Can.J.Phys., 2008, 86:801-805.
  • Huntington HB. The elastic constants of crystals. Solid State Physics, 1958, 7:213-351.
  • Marquart WR, Trivisonno J. Low temperature elastic constants of potassium. J. Phys. Chem. Solids, 1965, 26:273-278.
  • Gutman EJ, Trivisonno J. Temperature dependence of the elastic constants of rubidium. J. Phys. Chem. Solids, 1967, 28:805-809.
  • Kollarits FJ, Trivisonno J. Single-crystal elastic constants of cesium. J. Phys. Chem. Solids, 1968, 29:2133-2139.
  • Magana LF, Vazquez GJ. Ab initio calculation of the elastic constants of magnesium. J.Phys.: Condens. matter, 1995, 7:L393-L396.
  • Shukla RC. Simple method of deriving the elements of the tensor-force matrix for monoatomic cubic crystals. J.Chem. Phys., 1966, 45:4178-4181.
  • Collins MF. Lattice dynamics of magnesium. Proc.Phys.Soc., 1962, 80:362-372.
  • Silonov VM, Glyanenko IA. Raschet uprugikh postoyannykh metallov s geksagonalnoy plotnoy upakovkoy [Calculation of the elastic constants of metals with hexagonal close packing]. Vestnik Moskovskogo universiteta. Ser. Fiz. Astr., 1998, 3:38-40 (in Russ.).
  • Frantsevich IN, Voronov FF, Bakuta SA. Uprugie postoyannye i moduli uprugosti metallov i nemetallov: spravochnik [Elastic constants and elasticity moduli of metals and nonmetals: a Handbook]. Kiev, Naukova dumka Publ., 1980, 286 p.
  • Сavakheiro R, Shukla MM. Extended de Launey model for the lattice dynamics of HCP metals. Nuovo cimento, 1975, 30B(1):163-181.
  • Slutsky L, Garland CW. Elastic constants of magnesium from 4.2K to 300K. Phys. Rev., 1957, 107:972-976.
  • Shapiro SM, Moss SM. Lattice dynamics of face-centered-cubic Co0.92Fe0.08. Phys. Rev. B, 1977, 15(5):2726-2730.
  • Silonov VM, Rodin CYu, Enkhtur L. Raschet uprugikh postoyannykh mnogokomponentnykh tverdykh rastvorov [Calculation of the elastic constants of multi-component solid solutions]. Vestnik Moskovskogo universiteta. Ser.Fiz.Astron., 2000, 3:28-30 (in Russ.).
  • Rayne JA. Elastic constants of α-Brasses: Variation with Solute Concentration from 4.2-300K. Phys. Rev., 1958, 112:1125-1230.
  • Lekkery JT. Measurements of elastic moduli of face-centered cubic alloys of transition metals. J.Phys. F, 1981, 1:1991-1996.
  • Hausch G, Warlimont H. Single crystalline elastic constants of ferromagnetic face centered cubic Fe-Ni invar alloys. Acta Met., 1973, 2:401-409.
  • Einspruch NG, Claiborne LT. Elastic constants of 73.8%Ni, 26.2%Fe ferromagnetic alloy. J.Appl. Phys., 1964, 35:173-176.
  • Bower DI, Claridge E, Tsong IS. Low-Temperature Elastic Constants and Specific Heat of F.C.C. Nickel-Iron Alloys. Phys.Stat.Sol., 1968, 29:617-625.
  • Salmuter VK, Stangler F. Elastizitat und Plastizitat eines austentischen Chrom-Nickel-Stahls. Zeitschrift fur Metallkunde, 1960, 51:544-550.
  • Bradfield G. Comparison of the elastic anisotropy of two austenitic steels. J.Iron and Steel Inst., 1964, 202:616-621.
  • Enkhtur L, Silonov VM. Blizhniy poryadok v tverdykh rastvorakh sistemy Fe-Re [Short-range order in solid solutions of the system iron-rhenium]. Poverkhnost': rentgenovskie, sinkhrotronnye i neytronnye issledovaniya, 2015, 10:1-8 (in Russ.).
  • Maliszevski E, Sosnovski J, Bednarski S, Szachor A, Holas A. Lattice dynamics of Pd1-xFex system. J.Phys. F, 1975, 5:1455-1465.
  • Sato M, Grier Bn, Shapiro Sm, Miyajima H. Effect Of Magnetic Ordering On The Lattice Dynamics Of FCC Pd1-Xfex. J.Phys. F, 1982, 12:2117-2129.

Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/141/7(1)-68-86e.pdf