Vol. 6, №2, 2014
РусскийEnglish

NANOSYSTEMS



THE BIOFUEL ELEMENTS ON THE BASIS OF THE NANOCARBON MATERIALS
Valery A. Alferov

Tula State University, http://tsu.tula.ru
300012 Tula, Russian Federation
chem@tsu.tula.ru
Raif G. Vasilov
National Research Centre "Kurchatov Institute", http://www.nrcki.ru
123182 Moscow, Russian Federation
vasilov@nrcki.ru
Sergey P. Gubin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, http://www.igic.ras.ru
117991 Moscow, Russian Federation
gubin@igic.ras.ru
Vadim V. Kashin, Vladimir V. Kolesov
Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, http://www.cplire.ru
125009 Moscow, Russian Federation
kashin@cplire.ru, kvv@cplire.ru
Anna E. Kitova, Andrey V. Machulin, Anatoly N. Reshetilov, Tatiana A. Reshetilova
Scryabin Institute of Biochemistry and Physiology of microorganisms of RAS, http://www.ibpm.ru
142290 Puschino, Moscow Region, Russian Federation
anatol@ibpm.pushchino.ru

Received 21.11.2014
Abstract. The state of studies and the new directions, which are developed recently with the creation of the biological-fuel elements of devices, based on the biological material and generating the direct gen¬eration of electrical energy with the oxidation of substrata was examined. The functioning of the microbial biological-fuel elements, which oxidizes ethanol was investigated. The bioelectrocatalyst were the intact Gluconobacter oxydans bacterial cells or their membrans fractions. The application of nanocarbonic materials at the development of the electrodes for the biological-fuel elements was considered. The cell of the biological-fuel element on the basis of thermo-expanded graphite was experimentally studied. The special features of graphene as the bases of electrodes in the biological-fuel elements at the development of electrodes was reviewed. The successful develop¬ment of this subjects, which relates to the bioenergetics, possibly with the close cooperation of such areas of biotechnology as the biosensor and electrochemical studies, which are rested on the application of microelectronic technologies.

Keywords: biofuel elements, bioanode, direct obtaining electric energy, oxidation of substrata enzymes and microbe cells, membrane fractions, nanocarbon materials

PACS 82.45.Tv, 87.85 M-

Bibliography – 99 references

RENSIT, 2014, 6(2):187-208 DOI: 10.17725/RENSITe.0006.201412a.0187
REFERENCES
  • Logan BE. Microbial fuel cells. New Jersey, John Wiley & Sons, 2008, 200 p.
  • Bullen RA, Arnot TC, Lakeman JB, Walsh FC. Biofuel cells and their development. Biosensors and Bioelectronics, 2006, 21(15):2015-2045.
  • Reshetilov AN, Ponamareva ON, Reshetilova TA, Bogdanovskaya VA. Generatsiya elektricheskoy energii na osnove kletok mikroorganizmov [Generation of electricity energy in the biofuel element, based on the microbial cells]. Vestnik diotechn. i fiz.-khim. biologii im. YuA Ovchinnikova. 2005, 1(2):54-62 (in Russ.).
  • Katz E, Pita M. Biofuel cells controlled by logically processed biochemical signals: Towards physiologically regulated bioelectronic devices. Chem. Eur. J., 2009, 15:12554-12564.
  • Halme A, Zhang X-Ch. Biological fuel cells: Processing substrates to electricity by the aid of biocatalysts. In: Bioseparation and Bioprocessing, Subramanian G. (Ed.), Weinheim, Wiley-VCH, 2007, 355-382 p.
  • Potter MC. Proc. Roy. Soc. London Ser. B 84, 1911:260-276.
  • Kim BH, Kim HJ, Hyun MS, Park DH. Direct electrode reaction of Fe(III)-reducing bacterium Shewanella putrefaciens. J. Microbiol. Biotechnol. 1999, 9(2):127-131.
  • Halme A. 2010, http://automation.tkk.fi/files/biofuelcell/sfc00pos.htm.
  • Zhang X, Halme A. Modeling of a microbial fuel cell process. Biotechnology Letters, 1995, 17(8):809-814.
  • Zebda A, Gondran C, Cinquin P, Cosnier S. Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression. Sensors and Actuators B: Chemical. 2012, 173:760-764.
  • Zhang J, Zhu Y, Chen C, Yang X, Li C. Carbon nanotubes coated with platinum nanoparticles as anode of biofuel cell. Particuology, 2012, 10:450-455.
  • Lee JY, Shin HY, Kang SW, Park C, Kim SW. Application of an enzyme-based biofuel cell containing a bioelectrode modified with deoxyribonucleic acid-wrapped single-walled carbon nanotubes to serum. Enzyme and Microbial Technology. 2011, 48:80-84.
  • Rotta CEH, Ciniciato G, González ER. Triphenylmethane dyes, an alternative for mediated electronic transfer systems in glucose oxidase biofuel cells. Enzyme and Microbial Technology, 2011, 48(6):487-497.
  • Nien P-C, Wang J-Y, Chen P-Y, Chen L-C, Ho K-C. Encapsulating benzoquinone and glucose oxidase with a PEDOT film: Application to oxygen-independent glucose sensors and glucose/O2 biofuel cells. Bioresource Technology, 2010, 101:5480-5486.
  • Barrière F, Ferry Y, Rochefort D, Leech D. Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell. Electrochemistry Communications, 2004, 6(3):237-241.
  • Pöller S, Beyl Y, Vivekananthan J, Guschin DA, Schuhmann W. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications. Bioelectrochemistry, 2012, 87:178-184.
  • Ramanavicius A, Kausaite A, Ramanaviciene A. Enzymatic biofuel cell based on anode and cathode powered by ethanol. Biosensors and Bioelectronics, 2008, 24:761-766.
  • Zebda A, Renaud L, Cretin M, Innocent C, Ferrigno R, Tingry S. Membraneless microchannel glucose biofuel cell with improved electrical performances. Sensors and Actuators B: Chemical, 2010, 149:44-50.
  • Holzinger M, Goff AL, Cosnier S. Carbon nanotube/enzyme biofuel cells. Electrochimica Acta, 2012, 82(1):179-190.
  • Rincón R, Lau C, Luckarift HR, Garcia KE, Adkins E, Johnson GR, Atanassov P. Enzymatic fuel cells: Integrating flow-through anode and air-breathing cathode into a membrane-less biofuel cell design. Biosensors and Bioelectronics, 2011, 27(15):132-136.
  • Giroud G, Gondran Ch, Gorgy K, Pellissier A, Lenouvel F, Cinquin Ph, Cosnier S. A quinhydrone biofuel cell based on an enzyme-induced pH gradient. J. of Power Sources, 2011, 196:1329-1332.
  • Hubenova Y, Mitov M. Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry, 2010, 78:57-61.
  • Sayed ET, Saito Y, Tsujiguchi T, Nakagawa N. Catalytic activity of yeast extract in biofuel cell. J. of Bioscience and Bioengineering, 2012, 114:521-525.
  • Arechederra R, Minteer SD. Organelle-based biofuel cells: Immobilized mitochondria on carbon paper electrodes. Electrochimica Acta, 2008, 53(1):6698-6703.
  • Kim J, Jia H, Wang P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances, 2006, 24:296-308.
  • Tam KT, Pita M, Ornatska M, Katz E. Biofuel cell controlled by enzyme logic network - Approaching physiologically regulated devices. Bioelectrochemistry, 2009, 76:4-9.
  • Ramanavicius A, Kausaite A, Ramanaviciene A. Biofuel cell based on direct bioelectrocatalysis. Biosensors and Bioelectronics, 2005, 20:1962-1967.
  • Alferov SV, Tomashevskaya LG, Ponamareva ON, Bogdanovskaya VA, Reshetilov AN. Anod biotoplivnogo elementa na osnove bakterial'nykh kletok Gluconobacter oxydans i mediatora elektronnogo transporta 2,6-dichlorphenolindofenola [The anode of the biofuel element, based on bacterial cells Gluconobacter oxydans and mediator of electron transport 2,6-dichlorphenolindofenol]. Elektrokhimiya, 2006, 42(4):456-457 (in Russ.).
  • Alferov SV. Diss. ... kand. khem. nauk [Diss. ... cand. chem. Sciences]. Moscow, Lomonosov Moscow University of Fine Chemical Technology, 2010.
  • Satoshi S, Karube I. The development of microfabricated biocatalytic fuel cells. Trends In BioTechnology, 1999, 17:50-52.
  • HalámkováL, Halámek J, Bocharova V, Szczupak A, Alfonta L, Katz E. Implanted Biofuel Cell Operating in a Living Snail. J. Am. Chem. Soc., 2012, 134:5040-5043.
  • Schroder Uwe. From In Vitro to In Vivo-Biofuel Cells Are Maturing. Angewandte Chem. Int. Ed., 2012, 51:7370-7372.
  • Szczupak A, Halamek J, Halamkova L, Bocharova V, Alfontac L, Katz E. Living battery – biofuel cells operating in vivo in clams. Energy and Dynamic Article Links.Pfeffer C. et al. Filamentous bacteria transport electrons over centimetre distances. Nature, 2012, 491:218-221.
  • Gorshenev VN, Ilyushin AS, Kolesov VV, Fionov AS, Petrova NG. Kompozotsionnye materialy na osnove termorasshirennogo grafita [Composite materials based on termally expanded graphite]. Perspektivnye materialy, 2008, special issue, 6(1):351-355 (in Russ.).
  • Gorshenev VN, Bibikov SB, Novikov YuN. Elektroprovodyaschie materialy na osnove termorasshirennogo grafita [Electrically conductive materials based on termally expanded graphite]. Zhurnal prikladnoy khimii, 2003, 76(4):624-627 (in Russ.).
  • Katrlík J, Voštiar I, Šefčovičová J, Tkáč J, Mastihuba V, Valach M, Štefuca V, Gemeiner P. A novel microbial biosensor based on cells of Gluconobacter oxydans for the selective determination of 1,3-propanediol in the presence of glycerol and its application to bioprocess monitoring. Analytical and Bioanalytical Chemistry, 2007, 388(1):287-295.
  • Tkac J, Svitel J, Vostiar I, Navratil M, Gemeiner P. Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 2009, 76:53-62.
  • Ikeda T, Matsushita F, Senda M. Amperometric fructose sensor based on direct bioelectrocatalysis. Biosensors & Bioelectronics, 1991, 6:299-304.
  • Treu BL, Minteer SD. Isolation and purification of PQQ-dependent lactate dehydrogenase from Gluconobacter and use for direct electron transfer at carbon and gold electrodes. Bioelectrochemistry, 2008, 74:73-77.
  • Ramanavicius A, Kausaite A, Ramanaviciene A. Potentiometric study of quinohemoprotein alcohol dehydrogenase immobilized on the carbon rod electrode. Sensors and Actuators B: Chemical, 2006, 113(1):435-444.
  • Tkac J, Svitel J, Vostiar I, Navratil M, Gemeiner P. Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 2009, 76:53-62.
  • Lovley DR. Bug juice: harvesting electricity with microorganisms. Nature reviews: Microbiology, 2006, 4:507.
  • Richter H, McCarthy K, Nevin KP, Johnson JP, Rotello VM, Lovley DR. Electricity Generation by Geobacter sulfurreducens Attached to Gold Electrodes. Langmuir, 2008, 24(8):4376-4379.
  • Sidney Aquino Neto et al. Direct electron transfer-based bioanodes for ethanol biofuel cells using PQQ-depended alcohol and aldehyde dehydrogenases. Electrochimica Acta, 2013, 87:323-329.
  • Halámkova L. Implanted Biofuel Cell Operating in a Living Snail. J. Am. Chem. Soc., 2012, 134:5040-5043.
  • Jia W, Valds-Ramrez G, Bandodkar AJ, Windmiller JR, Wang J. Epidermal Biofuel Cells: Energy Harvesting from Human Perspiration. Angew. Chem. Int. Ed., 2013, 52:7233-7236.
  • Wang X, Gu H, Yin F, Tu Y. A glucose biosensor based on Prussian blue/chitosan hybrid film. Biosensors and Bioelectronics, 2009, 24(5):1527-1530.
  • Fialkov AS. Uglerod, mezhsloevye soedineniya i kompozity na ego osnove [Carbon interlayer compound and composites based on its]. Moscow, Aspekt Press Publ., 1997.
  • Ubbelode AR, Lewis FA. Graphite and its crystal compounds. Oxford, 1960.
  • Chernysh IG, Karpov II, Prikhod'ko BP, Shay VM. Fiziko-khimicheskie svoystva grafita i ego soedineniy [Physicochemical properties of graphite and its compounds]. Kiev, Naukova Dumka Publ., 1990.
  • Lopez-Gonzalez J, Martin-Rodriguez A, Rodríguez-Reinoso F. Kinetics of the formation of Graphite oxide. Carbon, 1975, 13(6):461-464.
  • Hontoria-Lucas C, Lopez-Peinado AJ, Lopez- Gonzalez JDD, Rojas-Cervantes ML, Martin- Aranda RM. Study of oxygen-containing groups in series of graphite oxides: physical and chemical characterization. Carbon, 1995, 33(11):1585-1592.
  • Brodie BC. Sur le poids atomique du graphite. Ann. Chim. Phys., 1860, 59:466-472.
  • Staudenmaier L. Verfahren zur Darstellung der Graphitsaure. Ber. Deut. Chem. Ges., 1898, 31:1481-1499.
  • Hummers WS, Offeman RE. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6):1339-1339.
  • Mkhoyan KA, Contryman AW, Silcox J, Stewart DA, Eda G, Mattevi C, Miller S, Chhowalla M. Atomic and Electronic Structure of Graphene- Oxide. NanoLett., 2009, 9(3):1058-1063.
  • Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I. Evolution of surface functional groups in a series of progressively oxidized graphite oxides. Chem. Mater., 2006, 18(11):2740-2749.
  • Park S, Lee K-S, Bozoklu G, Cai W, Nguyen ST, Ruoff RS. Graphene oxide papers modified by divalent ions – Enhancing mechanical properties via chemical cross-linking. ACS Nano, 2008, 2(3):572-578.
  • Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir, 2008, 24(19):10560- 10564.
  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleihammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7):1558-1565.
  • Wang Sh, Tang LA, Bao Q, Lin M, Deng S, Goh BM, Loh KP. Room-Temperature Synthesis of Soluble Carbon Nanotubes by the Sonication of Graphene Oxide Nanosheets. J. Am. Chem. Soc., 2009, 131:16832-16837.
  • Lomeda JR, Doyle CD, Kosynkin DV, Hwang W-F, Tour JM. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc., 2008, 130(48):16201-16206.
  • Lin Y, Yao J, Li Zh, Liu Y, Li Zh, Wong Ch-P. Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C, 2010, 114(35):14819-14825.
  • Yang Q, Pan X, Huang F, Li K. Fabrication of High-Concentration and Stable Aqueous Suspensions of Graphene Nanosheets by Noncovalent Functionalization with Lignin and Cellulose Derivatives. J. Phys. Chem. C, 2010, 114(9):3811-3816.
  • Gao J, Liu F, Liu Y, Ma N, Wang Zh, Zhang X. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater., 2010, 22(7):2213-2218.
  • Boehm HP, Eckel M, Scholz W. Uber den Bildungsmechanismus des Graphitoxids. Anorg. Allg. Chem., 1967, 353:236-242.
  • Boehm HP, Eckel M, Scholz W. Uber den Bildungsmechanismus des Graphitoxids. Anorg. Allg. Chem., 1967, 353:236-242.
  • Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H. Highly conducting graphene sheets and Langmuir–Blodgett films. Nature Nanotech., 2008, 3(9):538-542.
  • Gomez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U. Atomic Structure of Reduced Graphene Oxide. Nano Lett., 2010, 10(4):1144-1148.
  • Paredes JI, Villar-Rodil S, Solıs-Fernandez P, Martınez-Alonso A, Tascon JMD. Atomic Force and Scanning Tunneling Microscopy Imaging of Graphene Nanosheets Derived from Graphite Oxide. Langmuir, 2009, 25(10):5957-5968.
  • Pan D, Wang S, Zhao B, Wu M, Zhang H, Wang Y, Jiao Zh. Lithium Storage Properties of Disordered Graphene Nanosheets. Chem. Mater., 2009, 21(14):3136-3142.
  • Kundhikanjana W, Lai K, Wang H, Dai H, Kelly MA, Shen Z. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging. Nano Lett., 2009, 9(11):3762-65.
  • Ferrari AC. Raman spectroscopy of grapheme and graphite: Disorder, electron-photon coupling, doping and nonadiabatic effects. Solid state comm., 2007, 143(1-2):47-57.
  • Obraztsova EA, Osadchy AV, Obraztsova ED, Lefrant S, Yaminsky IV. Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of graphene layer numbers. Phys. stat. sol., B, 2008, 245(10):2055-59.
  • Stolyarova E, Rim KT, Ryu S, Maultzsch J, Kim P, Brus LE, Heinz TF, Hybertsen MS, Flynn GW. High resolution scanning tunneling mesoscopic imaging of graphene sheets on an insulating surface. PNAS, 2007, 104(22):9209-12.
  • Leech D, Kavanagh P, Schuhmann W. Electrochim. Acta, 2012, 84:223-234.
  • Tarasevich MR, Yaropolov AI, Bogdanovskaya VA, Varfolomeev SD. Bioelectroch. Bioener., 1979, 6:393-403.
  • Scida K, Stege PW, Haby G, Messina GA, García CD. Anal. Chim. Acta, 2011, 691:6-17.
  • Tamaki T. Top. Catal., 2012, 55:1162-1180.
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306:666-669.
  • Bonanni A, Loo AH, Pumera M. Trends Anal. Chem., 2012, 37:12-21.
  • Filip J, Tkac J. Is graphene worth using in biofuel cells? Electrochimica Acta, 2014, 136:340-354.
  • Dreyer DR, Park S, Bielawski CW, Ruoff RS. Chem. Soc. Rev., 2010, 39:228-240.
  • Liu Y, Dong X, Chen P. Chem. Soc. Rev., 2012, 41:2283-2307.
  • Wu H, Wang J, Kang X, Wang C, Wang D, Liu J, Aksay IA, Lin Y. Talanta, 2009, 80:403-406.
  • Liu C, Alwarappan S, Chen Z, Kong X, Li C-Z. Biosens. Bioelectron., 2010, 25:1829-1833.
  • Shan D, Zhang J, Xue H-G, Ding S-N, Cosnier S. Biosens. Bioelectron., 2010, 25:1427-1433.
  • Potter MC. Proc. of the Royal Society of London. Series B, Containing Papers of a Biological Character, 1911, 84:260-276.
  • Stirling JL, Bennetto HP, Delaney GM, Mason JR, Roller SD, Tanaka K, Thurston CF. Biochem. Soc. Trans., 1983, 11:451-453.
  • Chaudhuri SK, Lovley DR. Nat. Biotechnol., 2003, 21:1229-1232.
  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH. Enzyme Microb.Technol., 2002, 30:145-152.
  • Schröder U. J. Solid State Electrochem., 2011, 15:1481-1486.
  • Malvankar NS, Lovley DR. Curr. Opin. Biotech., 2014, 27:88-95.
  • Logan BE, Regan JM. Trends Microbiol., 2006, 14:512-518.
  • Lovley DR. Energy Environ. Sci., 2011, 4:4896-4906.
  • Richter H, Nevin KP, Jia H, Lowy DA, Lovley DR, Tender LM. Energy Environ. Sci., 2009, 2:506-516.
  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K. Bioresource Technol., 2010, 101:1533-1543.
  • Kashin VV, Kolesov VV, Krupenin SV, Parshintsev AA, Reshetilov AN, Soldatov ES, Azev VN. Molekulyarny nanobiosensor na osnove fermenta glyukosooksidazy [Molecular nanobiosensor on the basis of glucose oxydas enzyme]. RENSIT, 2013, 5(2):45-61 (in Russ.).


Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/140/6(2)-187-208e.pdf