Vol. 8, №1, 2016
РусскийEnglish

CONDENSED MATTER PHYSICS



STRUCTURAL VARIATIONS OF GRAPHАNE
Tatiana E. Belenkova, Vladimir M. Chernov, Eugeny A. Belenkov

Chelyabinsk State University, http://www.csu.ru
454001 Chelyabinsk, Russian Federation
belenkova_te@gmail.com, chernov@csu.ru, belenkov@csu.ru

Received 02.06.2016
Abstract. Calculations of the structure and electronic properties for five structural variations of graphane were performed within the framework of density functional theory (DFT) with generalized gradient approximations (DDA). The electron densities of states and band structure of graphene crystals have been calculated. It has been established that the band gap at the Fermi level for graphane polymorphs varies from 5.50 eV to 5.65 eV. Energy sublimation graphane layers with different structure was varying from 11.33 to 11.48 eV/atom.

Keywords: carbon, graphene, crystal structure, polymorphism, first principles calculations

PACS 81.05.ue

Bibliography – 11 references

RENSIT, 2016, 8(1):49-54 DOI: 10.17725/rensit.2016.08.049
REFERENCES
  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 2004, 306:666-669.
  • Sofo JO, Chaudhari AS, Barber GD. Graphane: A two-dimensional hydrocarbon. Phys. Rev. B, 2007, 75:153401.
  • Elias DC, Nair RR, Mohiuddin TM, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of graphene's properties by reversible hydrogenation: evidence for graphane. Science, 2009, 323:610-613.
  • Openov LA, Podlivaev AI. Termicheskaya desirbtsiya vodoroda iz grafana [Thermal desorption of hydrogen from graphane]. Technical Physics Letters, 2010, 36(1):69-75 (in Russ.).
  • Belenkova TE, Anfreeva AA. Modelirovanie struktury elektronnykh ustroystv na osnove selektivno grafitirovannykh grafanovykh sloev [Modeling the structure of electronic devices based on selectively carbonated graphane layers]. Theses VNKSF-18 (Krasnoyarsk, 2012). Ekaterinburg, ASF, 2012:102-103 (in Russ.).
  • Belenkov EA, Shabiev FK. Scroll structure of carbon nanotubes obtained by the hydrothermal synthesis. Letters on materials, 2015, 5(4):459-462.
  • Wen XD, Hand L, Labet V, Yang T, Hoffmann R,1, Ashcroft NW, Oganov AR, Lyakhov AO. Graphane sheets and crystals under pressure. PNAS, 2011, 108(17):6833–6837.
  • Sorokin PB, Chernozatonskii LA. Poluprovodnikovye nanostruktury na osnove grafena [Graphene-based semiconductor nanostructures]. Phys. Usp., 2013, 56(2):105–122.
  • Koch WA, Holthausen MC. Chemist’s Guide to Density Functional Theory. 2nd edition. Wiley-VCH Verlag GmbH, 2001, 293 p.
  • Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 1992, 46:6671-6687.
  • Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter, 2009, 21:395502.


Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/143/8(1)-49-54e.pdf