Vol. 8, №1, 2016


Denis Yu. Kornilov

«AkKo Lab» LLC, http://akkolab.ru/en/
129110, Moscow, Russian Federation
Sergey P. Gubin
Kurnakov Institute of general and inorganic chemistry, Russian Academy of Sciences, http://www.igic.ras.ru/en/
119991, Moscow, Russian Federation
gubin@ igic.ras.ru

Received 18.06.2016
Abstract. Despite modern technological advances, the creation of powerful, energy-intensive and environmentally friendly energy storage devices is an actual problem. Lithium-ion batteries (LIBs), which have a high density of stored energy and low self-discharge, are the priority in the list of advanced energy storage devices. Performance of LIB depends on the composition and structure of the materials used to create the cathodes and anodes. Recently, among the new materials focusing on graphene combines a number of unique properties of the defining prospects use as electrode materials. This review summarizes the modern main achievements of the period from 2013 by 2015 in the area of graphene application and composite materials on its basis, as materials for the LIB electrodes.

Keywords: lithium-ion battery, graphene, graphene oxide

UDC 621.

Bibliography – 82 references

RENSIT, 2016, 8(1):39-48 DOI: 10.17725/rensit.2016.08.039
  • Yaroslavtsev AB, Kulova TL, Skundin AM. Electrode nanomaterials for lithium-ion rechargeable battery. Russ. Chem. Rev., 2015, 84:826-852.
  • Wu Y. Lithium-ion Batteries, Fundamentals and Applications. NY, Taylor & Francis Group, 2015, p. 568.
  • Goodenough J, Park K. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc., 2013, 135:1167-1176.
  • Warner JT. The Handbook of Lithium-Ion Battery Pack Design. Chemistry, Components, Types and Terminology. Elsevier Science, 2015, p. 262.
  • Gulbinska MK (Ed.). Lithium-ion Battery Materials and Engineering. London, Springer, 2014, p. 205.
  • Chudinov EA, Tkachuk SA, Shishko VS. Tekhnologicheskie osnovy proizvodstva litiy-ionnogo akkumulyatora [Technological basis of lithium-ion battery production]. Elektrokhimicheskaya energetika, 2015, 15(2):84-92 (in Russ.).
  • Jiang J, Zhang C. Fundamentals and applications of lithium-ion batteries in electric drive vehicles. Singapore, Wiley, 2015, p. 280.
  • Link AN, O’Connor AC, Scott TJ. Battery Technology for Electric Vehicles. NY, Routledge, 2015, p. 129
  • Srivastava M, Singh J, Kuila T, Layek R, Kim N, Lee J. Recent advances in graphene and its metal-oxide hybrid nanostructured for lithium-ion batteries. Nanoscale, 2015, 7:4820. DOI: 10.1039/C4NR07068B.
  • Luo B., Zhi L. Design and construction of three dimensional graphene-based composites for lithium-ion battery applications. Energy Environ. Sci., 2015, 8:456-477. DOI: 10.1039/C4EE02578D.
  • Gubin SP, Tkachev SV. Grafen i rodstvennye nanoformy ugleroda [Graphene and carbon related nanoforms]. Moscow, URSS LENAND, 2015, Issue 4, pp. 112.
  • Ferrari A. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7:4598-4810. DOI: 10.1039/C4NR01600A.
  • 13. Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb-Ibrahimi A, Li A-P, Jiang Z, Conrad EH, Berger C. Tegenkamp C, de Heer WA. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature, 2014, 506:349. DOI: 10.1038/nature12952.
  • Huang G, Hou C, Shao Y, Wang H, Zhang Q, Li Y, Zhu M. Highly Strong and Elastic GrapheneFibers Prepared from Universal Graphene Oxide Precursors. Scientific reports, 2014, 4:4248. DOI: 10.1038/srep04248.
  • Wang Y, Zhang Q, Jia M, Yang D, Wang J, Li M, Zhang J, Sun Q, Jia Y. Porous graphene for high capacity lithium ion battery anode material. Applied Surface Science, 2016, 363:318-322.
  • www.akkolab.ru.
  • https://graphene-supermarket.com.
  • Ma J, He Y, Zhang W, Wang J, Yang X, Liao X, Ma Z. Rapid communication: An experimental insight into the advantages of in- situ solvothermal route to construct 3D graphene-based anode materials for lithium-ion batteries. Nano Energy, 2015, 16:235-246.
  • Cao H, Zhou X, Zheng C, Liu Z. Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries. Carbon, 2015, 89:41-46.
  • Guo R, Zhao L, Yue W. Assembly of core–shell structured porous carbon-graphene composites as anode materials for lithium-ion batteries. Electrochimica Acta, 2015, 152:338-344.
  • Liu X, Wu Y, Yang Z, Pan F, Zhong X, Wang J, Gu L, Yu Y. Nitrogen-doped 3D macroporousgraphene frameworks as anode for high performance lithium-ion batteries. Journal of Power Sources, 2015, 293:799-805.
  • Dao T, Dung H, Jung-Eui R, Kwang-Sun J, Han M. Super-tough functionalized graphene paper as a high-capacity anode for lithium ion batteries. Chemical Engineering Journal, 2014, 250:257-266.
  • Oh K, Min C, Sung-Woo K, Gyeong-Ok R, Kwang-Sun J, Han M. Novel graphene papers with sporadic alkyl brushes on the basal plane as a high-capacity flexible anode for lithium ion batteries. Electrochimica Acta, 2014, 135:478-486.
  • Ahn W, Song H, Park S, Kim K, Shin K, Lim S, Yeon S. Morphology-controlled graphemenanosheets as anode material for lithium-ion batteries. Electrochimica Acta, 2014, 132:172-179.
  • Li H, Niu R, Liang S, Ma Y, Luo M, Li J, He L. Sulfonated Reduced Graphene Oxide: A High Performance Anode Material for Lithium Ion Battery. ACS Nano, 2015, 10(4):1-7.
  • Zhang J, Guo B, Yang Y, Shen W, Wang Y, Zhou X, Wu H, Guo S. Large scale production of nanoporousgraphene sheets and their application in lithium ion battery. Carbon, 2015, 84:469-478.
  • Hu Y, Li X, Geng D, Cai M, Li R, Sun X. Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium ion batteries. Electrochimica Acta, 2013, 91:227-233.
  • Cai D, Wang S, Lian P, Zhu X, Li D, Yang W, Wang H. Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochimica Acta, 2013, 90:492-497.
  • Ye JC, Charnvanichborikarn S, Worsley MA, Kucheyev SO, Wood BC, Wang YM. Enhanced electrochemical performance of ion-beam-treated 3D graphene aerogels for lithium ion batteries. Carbon, 2015, 85:269-278.
  • Hu Y, He D, Wang Y, Fu M, An X, Zhao X. Defect-introduced graphene sheets with hole structure as lithium-ion battery anode. Materials Letters, 2016, 164:278-281.
  • Fu C, Li S, Wang Q. High reversible capacity of Nitrogen-doped graphene as an anode material for lithium-ion batteries. Advanced Materials Research, 2014, 1070-1072:459-464.
  • Jiao L, Wu T, Li H, Lia F, Niu L. High quality graphitized graphene as an anode material for lithium ion batteries. Chem. Commun., 2015, 51:15979-15981.
  • Hassoun J, Bonaccorso F, Agostini M, Angelucci M, Betti M, Cingolani R, Gemmi M, Mariani C, Panero S, Pellegrini V, Scrosati B. An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode. Nano Lett., 2014, 14:4901-4906.
  • Kim H, Park K, Hong J, Kang K. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Scientific Reports, 2014, 4:5278. DOI: 10.1038/srep05278.
  • Vargas O, Caballero A, Morales J, Elia G, Scrosatiw B, Hassoun J. Electrochemical performance of a graphemenanosheets anode in a high voltage lithium-ion cell. Phys. Chem. Chem. Phys., 2013, 15:20444-20446.
  • Jeong S, Yang S, Jeong S, Kim I, Jeong H, Han J, Baeg K, Lee G. Monolithic Graphene Trees as Anode Material for Lithium Ion Batteries with High C-Rates. Small, 2015, 11(23):2774-2781.
  • Xu Y, Lin Z, Zhong X, Papandrea B, Huang Y, Duan X. Solvated Graphene Frameworks as High-Performance Anodes for Lithium-Ion Batteries.Angew. Chem. Int. Ed., 2015, 54:5345-5350.
  • Zhao D, Wang L, Yu P, Zhao L, Tian C, Zhou W, Zhang L, Fu H. From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries.Nano Research., 2015, 8(9):2998-3010.
  • Kim H, Huang X, Guo X, Wen Z, Cui S, Chen J. Novel Hybrid Carbon Nanofiber/Highly Branched GrapheneNanosheet for Anode Materials in Lithium-Ion Batteries. Appl. Mater. Interfaces, 2014, 6:18590-18596.
  • Yu L, XiHai J, Jing S. Advances of graphene application in electrode materials for lithium ion batteries. Sci China Tech Sci., 2015, 58(11):1829-1840.
  • Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nature Materials, 2015, 14:271-279.
  • Wu JS, Rui XH, Long GK, Chen WQ, Yan QY, Zhang QC. Pushing Up Lithium Storage through Nanostructured Polyazaacene Analogues as Anode. Angew. Chem., Int. Ed., 2015, 54:7354.
  • Fan XF, Zheng WT, Kuo JL. Adsorption and Diffusion ofLi on Pristine and Defective Graphene. ACS Appl. Mater. Interfaces, 2012, 4:2432.
  • Zhou LJ, Hou ZF, Wu LM. First-Principles Study ofLithium Adsorption and Diffusion on Graphene with Point Defects. J.Phys. Chem. C, 2012, 116:21780.
  • Mukherjee R, Thomas AV, Datta D, Singh E, Li JW, Eksik O, Shenoy VB, Koratkar N. Defect-Induced Plating ofLithium Metal within Porous Graphene Networks. Nat. Commun., 2014, 5:3710.
  • Yao R, Zhao D, Bai L, Yao N, Xu L. Facile synthesis and electrochemical performances of hollow graphene spheres as anode material for lithium-ion batteries. Nanoscale Research Letters, 2014, 9:368. DOI: 10.1186/1556-276X-9-368.
  • Hu C, Lv L, Xue J, Ye M, Wang L, Qu L. Branched GrapheneNanocapsules for Anode Material of Lithium-Ion Batteries. Chem. Mater., 2015, 27:5253-5260.
  • Wen L, Liu C, Song R, Shi Y, Li F, Cheng H, Luo H. Lithiumstorage characteristics and possible applications of graphene materials. ActaChimicaSinica, 2014. 3:333-344.
  • Atabaki M, Kovacevic R. Graphene Composites as Anode Materials in Lithium-Ion Batteries. Electronic Materials Letters, 2013, 9(2):133-153.
  • Qin J, He C, Zhao N, Wang Z, Shi C, Liu E, Li J. Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode. ACS Nano, 2014, 8(2):1728-1738.
  • Wu Q, Wang C, Ren J. Sn and SnO2-graphene composites as anode materials for lithium-ion batteries. Ionics, 2013, 19:1875-1882.
  • Zhang Y, Jiang L, Wang C. Facile synthesis of SnO2 nanocrystals anchored onto graphemenanosheets as anode materials for lithium-ion batteries. Phys.Chem.Chem.Phys., 2015, 17:20061-20065.
  • Zhou X, Bao J, Dai Z, Guo Y. Tin Nanoparticles Impregnated in Nitrogen-Doped Graphene for Lithium-Ion Battery Anodes. J. Phys. Chem. C, 2013, 117:25367-25373.
  • Liu H, Huang J, Xiang C, Liu J, Li X. In situ synthesis of SnO2 nanosheet/graphene composite as anode materials for lithium-ion batteries. Mater Sci: Mater Electron., 2013, 24:3640-3645.
  • Guo Q, Qin X. Flower-like SnO2 nanoparticles grown on graphene as anode materials for lithium-ion batteries. Solid State Electrochem., 2014, 18:1031-1039.
  • Dhanabalan A, Li X, Agrawal R, Chen C, Wang C. Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries. Nanomaterials, 2013, 3:606-614.
  • Lin J, Peng Z, Xiang C, Ruan G, Yan Z, Natelson D, Tour J. Graphene Nanoribbon and Nanostructured SnO2 Composite Anodes for Lithium Ion Batteries. ACS Nano, 2013, 7(7):6001-6006.
  • Genorio B, Lu W, Dimiev AM, Zhu Y, Raji A, Novosel B, Alemany LB, Tour JM. In Situ Intercalation Replacement and Selective Functionalization of Graphene Nanoribbon Stacks. ACS Nano, 2012, 6:4231-4240.
  • Zhou M, Li X, Wang B, Zhang Y, Ning J, Xiao Z, Zhang X, Chang Y, Zhi L. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies. Nano Lett., 2015, 15:6222-6228.
  • Gao X, Li J, Xie Y, Guan D, Yuan C. A Multilayered Silicon-Reduced Graphene Oxide Electrode for High Performance Lithium-Ion Batteries. Appl. Mater. Interfaces, 2015, 7:7855-7862.
  • Wang B, Li X, Zhang X, Luo B, Jin M, Liang M, Dayeh S, Picraux S, Zhi L. Adaptable Silicon-Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium-Ion Battery Anodes. ACS Nano, 2013, 7(2):1437-1445.
  • Chang J, Huang X, Zhou G, Cui S, Hallac P, Jiang J, Hurley P, Chen J. Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode. Adv. Mater., 2014, 26:758-764.
  • Hassan F, Rahman Elsayed A, Chabot V, Batmaz R, Xiao X, Chen Z. Subeutectic Growth of Single-Crystal Silicon Nanowires Grown on and Wrapped with Graphene Nanosheets: High-Performance Anode Material for Lithium-Ion Battery. Appl. Mater. Interfaces, 2014, 6:13757-13764.
  • Liu X, Zhang J, Si W, Xi L, Eichler B, Yan C, Schmidt O. Sandwich Nanoarchitectureof Si/Reduced Graphene Oxide Bilayer Nanomembranes for Li-Ion Batteries with Long Cycle Life. ACS Nano, 2015, 9(2):1198-1205.
  • Ko M, Chae S, Jeong S, Oh P, Cho J. Elastic α-Silicon Nanoparticle Backboned Graphene Hybridas a Self-Compacting Anode for High-Rate Lithium Ion Batteries. ACS Nano, 2014, 8(8):8591-8599.
  • Li D, Shi D, Liu Z, Liu H, Guo Z. TiO2 nanoparticles on nitrogen-doped graphene as anodematerial for lithium ion batteries. J Nanopart Res., 2013, 15:1674.
  • Liu H, Cao K, Xu X, Jiao L, Wang Y, Yuan H. Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries. Appl. Mater. Interfaces, 2015, 7:11239-11245.
  • Zhen M, Zhu X, Zhang X, Zhou Z, Liu L. Reduced Graphene Oxide-Supported TiO2 Fiber Bundles with Mesostructures as Anode Materials for Lithium-Ion Batteries. Chem. Eur. J., 2015, 21:14454-14459.
  • Li W, Wang F, Liu Y, Wang J, Yang J, Zhang L, Elzatahry A, Al-Yongyao D, Zhao D. General Strategy to Synthesize Uniform Mesoporous TiO2/Graphene/Mesoporous TiO2 Sandwich-Like Nanosheets for Highly Reversible Lithium Storage. Nano Lett., 2015, 15:2186-2193.
  • Zhang Z, Zhang L, Li W, Yu A, Wu P. Carbon-Coated Mesoporous TiO2 Nanocrystals Grown on Graphenefor Lithium-Ion Batteries. Appl. Mater. Interfaces, 2015, 7:10395-10400.
  • Shuvo M, Rodriguez G, Islam T, Karim H, Ramabadran N, Noveron J, Lin Y. Microwave exfoliated graphene oxide/TiO2 nanowire hybrid for high performancelithium ion battery. J. Appl. Phys., 2015, 118:125102.
  • Chen S, Qin X. Tin oxide-titaniumoxide/graphene composited as anode materialsfor lithium-ion batteries. J Solid State Electrochem., 2014, 18:2893-2902.
  • Medina P, Zheng H, Fahlman B, Annamalai P, Swartbooi A, Roux L, Mathe M. Li4Ti5O12/graphene nanoribbons composite as anodes for lithium ion batteries. Springer Plus., 2015, 4:643.
  • Zhang Q, Peng W, Wang Z, Li X, Xiong X, Guo H, Wang Z, Wu F. Synthesis and characterization of Li4Ti5O12/graphene composite as anode material with enhanced electrochemical performance. Ionics, 2013, 19:717-723.
  • Sun Y, Hu X, Luo W, Xia F, Huang Y. Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Adv. Funct. Mater., 2013, 23:2436-2444.
  • Wu T, Tu F, Liu S, Zhuang S, Jin G, Pan C. MnO nanorods on graphene as an anode material for highcapacity lithium ion batteries. J Mater Sci., 2014, 49:1861-1867.
  • Park A, Kim J, Kim K, Zhang K, Park J, Park J, Lee J, Yoo P. Si-Mn/Reduced Graphene Oxide Nanocomposite Anodes with Enhanced Capacity and Stability for Lithium-Ion Batteries. Appl. Mater. Interfaces, 2014, 6:1702-1708.
  • Chen S, Qin X. Molybdenum oxide-iron oxide/graphene composite as anodematerials for lithium ion batteries. J. Solid State Electrochem., 2015, 19:1867-1874.
  • Zhao Y, Kuai L, Liu Y, Wang P, Arandiyan H, Cao S, Zhang J, Li F, Wang Q, Geng B, Sun H. Well-Constructed Single-Layer Molybdenum Disulfide Nanorose Cross-Linked by Three Dimensional-Reduced Graphene Oxide Network for Superior Water Splitting and Lithium Storage Property. Scientific Reports, 2015, 5:8722. DOI: 10.1038/srep08722.
  • Choi S, Kang Y. Crumpled Graphene-Molybdenum Oxide Composite Powders: Preparation and Application in Lithium-Ion Batteries. ChemSus Chem., 2014, 7:523-528.
  • Kornilov DYu, Gubin SP. Grafen - elektrodaktivny material dlya litiy-ionnykh akkumulyatorov [Graphene is electrode active material for lithium-ion batteries]. Intern. Conference “Physico-chemical problems of renewable energetics”, Ioffe Institute, Nov. 16-18, 2015, St Petersburg, Publishing House of the Polytechnic. Univ., 2015, p.123.
  • Kim J, Kim D, Jung H, Choi J. Controlled Lithium Dendrite Growth by a Synergistic Effect of Multilayered Graphene Coating and an Electrolyte Additive. Chem. Mater., 2015, 27:2780-2787.

Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/143/8(1)-39-48e.pdf