Vol. 8, №1, 2016


Oleg V. Gradov

Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, http://www.inepcp.ru
117829, Moscow, Russian Federation

Received 16.06.2016
Abstract. Since the pioneering works of the founder of membrane mimetic chemistry Janos H. Fendler it is known that a number of atomic or molecular clusters and films (including nanoscale ones) are capable of mimicking the membrane functions. Membrane mimetic materials can be either soft matter or solid state materials. Conducting films (including those with magnetic properties) and semiconductors are also known to possess membrane mimetic properties. If we consider the agent exchange through the membrane in the operator form, the chemical composition of the membranes and their models, as well as the difference between the atomic and molecular clusters or layers become not so essential, and hence, membrane mimetic chemistry of nano- and mesostructures do not differ significantly within the agent-based approach. This invited review containing several parts reflects the main aspects of the author’s report at the conference “Graphene”: a molecule and 2D-crystal” (September 8-12, 2015, Novosibirsk, Russia) and considers various aspects of the similarity between the graphene nanostructures, membranes and bionic membrane-like nanomaterials.

Keywords: bilayer graphene, bilipid layers, membrane mimetics, nanobionics

PACS: 81.05.ue

Bibliography – 112 references

RENSIT, 2016, 8(1):25-38 DOI: 10.17725/rensit.2016.08.025
  • Luckey M. Membrane Structural Biology: With Biochemical and Biophysical Foundations. Cambridge University Press, 2008, 344 p.
  • Yeagle PL. The Membranes of Cells. Amsterdam, Academic Press (Elsevier), 2016, 452 p.
  • Kron G. Diakoptics; the piecewise solution of large-scale systems. London, MacDonald, 1963, 166 p.
  • Peschel M. Modellbildung fur signale und systeme. Berlin, VEB Verlag Technik,1978, 183 p.
  • Namatame A, Kurihara S, Nakashima H. (Eds.) Emergent Intelligence of Networked Agents. Berlin – Heidelberg, Springer, 2010, 258 p.
  • Chang TMS. Artificial cells. Springfield, Thomas, 1972, 207 p.
  • Chang TMS. Artificial cells: biotechnology, nanomedicine, regenerative medicine, blood substitutes, bioencapsulation, and cell/stem cell therapy. New Jersey, World Scientific, 2007, 455 p.
  • Bangham AD. Membrane models with phospholipids. Prog. Biophys. Mol. Biol., 1968, 18: 29-95.
  • Alkaitis D, Merola AJ, Lehninger AL. Phospholipid bilayers as biological membrane models: the effect of N,N'-bis(dichloroacetyl)-1,12-diaminododecane. J. Membr. Biol., 1972, 10(3):237-246.
  • Thompson TE. Experimental bilayer membrane models. Protoplasma, 1967, 63(1):194-196.
  • Nicot C, Vacher M, Vincent M, Gallay J, Waks M. Membrane proteins in reverse micelles: myelin basic protein in a membrane-mimetic environment. Biochemistry, 1985, 24(24):7024-7032.
  • Chatenay D, Urbach W, Cazabat AM, Vacher M, Waks M. Proteins in membrane mimetic systems. Insertion of myelin basic protein into microemulsion droplets. Biophys J., 1985, 48(6):893-898.
  • Tiourina OP, Radtchenko I, Sukhorukov GB, Möhwald H. Artificial cell based on lipid hollow polyelectrolyte microcapsules: channel reconstruction and membrane potential measurement. J. Membr. Biol., 2002, 190(1):9-16.
  • Timashev SF. From Biological to Synthetic Membranes. Russ. Chem. Bull., 1988, 57(6):487-503
  • Maniloff J. The minimal cell genome: "on being the right size". Proc. Nat. Acad. Sci. USA., 1996, 93(19):10004-10006.
  • Islas S, Becerra A, Luisi PL, Lazcano A. Comparative genomics and the gene complement of a minimal cell. Orig. Life Evol. Biosph., 2004, 34(1-2):243-256.
  • Bork P, Ouzounis C, Casari G, Schneider R, Sander C, Dolan M, Gilbert W, Gillevet PM. Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Mol. Microbiol., 1995, 16(5):955-967.
  • Browning ST, Castellanos M, Shuler ML. Robust control of initiation of prokaryotic chromosome replication: essential considerations for aminimal cell. Biotech. Bioeng., 2004, 88(5):575-584.
  • Delaye L, Moya A. Evolution of reduced prokaryotic genomes and the minimal cell concept: variations on a theme. Bioessays, 2010, 32(4):281-287.
  • Zhang LY, Chang SH, Wang J. How to make a minimal genome for synthetic minimal cell. Prot. Cell., 2010, 1(5):427-434.
  • Juhas M. On the road to synthetic life: the minimal cell and genome-scale engineering. Crit Rev. Biotechnol., 2016, 36(3):416-423.
  • Castellanos M, Wilson DB, Shuler ML. A modular minimal cell model: purine and pyrimidine transport and metabolism. Proc. Nat. Acad. Sci. USA., 2004, 101(17):6681-6686.
  • Oberholzer T, Wick R, Luisi PL, Biebricher CK. Enzymatic RNA replication in self-reproducing vesicles: an approach to a minimal cell. Biochem. Biophys. Res. Commun., 1995, 207(1):250-257.
  • Lluch-Senar M, Delgado J, Chen WH, Lloréns-Rico V, O'Reilly FJ, Wodke JA, Unal EB, Yus E, Martínez S, Nichols RJ, Ferrar T, Vivancos A, Schmeisky A, Stülke J, van Noort V, Gavin AC, Bork P, Serrano L. Defining a minimal cell: essentiality of small ORFs and ncRNAs in a genome-reduced bacterium. Mol. Syst. Biol., 2015, 11(1):780.
  • Murtas G. Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell. Syst. Synth. Biol., 2010, 4(2):85-93.
  • Castellanos M, Kushiro K, Lai SK, Shuler ML. A genomically/chemically complete module for synthesis of lipid membrane in a minimal cell. Biotech. Bioeng., 2007, 97(2):397-409.
  • Murtas G. Question 7: construction of a semi-synthetic minimal cell: a model for early living cells. Orig. Life Evol. Biosph., 2007, 37(4-5):419-22.
  • Caschera F, Noireaux V. Integration of biological parts toward the synthesis of a minimal cell. Curr. Opin. Chem. Biol., 2014, 22:85-91.
  • Munteanu A, Solé RV. Phenotypic diversity and chaos in a minimal cell model. J. Theor. Biol., 2006, 240(3):434-442.
  • Luisi PL, Stano P. Synthetic biology: minimal cell mimicry. Nat. Chem., 2011, 3(10):755-756.
  • Fendler JH. Atomic and molecular clusters in membrane mimetic chemistry. Chem. Rev., 1987, 87(5):877–899.
  • Fendler J.H. Membrane-Mimetic Approach to Nanotechnology. “Advances in the Applications of Membrane-Mimetic Chemistry”. New York, Springer, 1994, pp. 1-15.
  • Pidgeon C. Solid phase membrane mimetics: immobilized artificial membranes. Enz. Micr. Tech., 1990, 12(2):149-150.
  • Fendler JH. Metallic and catalytic particles. Adv. Polym. Sci., 1994, 113:96-118.
  • Fendler JH. Semiconductor particles and particulate films. Adv. Polym. Sci., 1994, 113:118-159.
  • Fendler JH. Conductors and superconductors. Adv. Polym. Sci., 1994, 113:159-171.
  • Fendler JH. Magnetism, magnetic particles, and magnetic particulate films in membrane-mimetic compartments. Adv. Polym. Sci., 1994, 113:172-181.
  • Cope FW. Evidence for semiconduction in Aplysia nerve membrane. Proc. Nat. Acad. Sci. USA. 1968. 61(3):905-908.
  • Adam G. Electrical characteristics of the ionic psn-junction as a model of the resting axon membrane. J. Membr. Biol., 1970, 3(1):291-312.
  • Rosenberg B, Pant HC. The semiconducting rectifier behaviour of a bimolecular lipid membrane. Chem. Phys. Lipids., 1970, 4(2):203-207.
  • Gracheva ME, Vidal J, Leburton JP. p-n Semiconductor membrane for electrically tunable ion current rectification and filtering. Nano Lett., 2007, 7(6):1717-1722.
  • Dragomir CT. Zone melting as a model for active transport across the cell membrane. J. Theor. Biol., 1971, 31(3):453-468.
  • Tien HT. Semiconducting Photoactive Bilayer Lipid Membranes. Solut. Behav. Surfact., 1982, 1:229-240.
  • Cope FW. Semiconduction as the mechanism of the cytochrome oxidase reaction. Low activation energy of semiconduction measured for cytochrome oxidase protein. Solid state theory of cytochrome oxidase predicts observed kinetic peculiarities. Physiol. Chem. Phys., 1979, 11(3):261-262.
  • Kleman M., Lavrentovich OD. Soft matter physics. New York, Springer, 2003, 637 p.
  • Cope FW. Supramolecular biology: a solid state physical approach to ion and electron transport. Ann. NY Acad. Sci., 1973, 204:416-433.
  • Resnati G, Boldyreva E, Bombicz P, Kawano M. Supramolecular interactions in the solid state. Int. Un. Crystallogr. Journ., 2015, 2(6):675-690.
  • Haketa Y, Takayama M, Maeda H. Solid-state supramolecular assemblies consisting of planar charged species. Org. Biomol. Chem., 2012, 10(13):2603-2606.
  • Borovkov VV, Harada T, Hembury GA, Inoue Y, Kuroda R. Solid-state supramolecular chirogenesis: high optical activity and gradual development of zinc octaethylporphyrin aggregates. Angew. Chem. Int. Ed., 2003, 42(15):1746-1749.
  • Gibb BC. A solid-state supramolecular sweet spot. Angew. Chem. Int. Ed., 2003,42(15):1686-1687.
  • Shiu KB, Lee HC, Lee GH, Ko BT, Wang Y, Lin CC. Solid-state supramolecular organization of supermolecules into a truly molecular zeolite. Angew. Chem. Int. Ed., 2003, 42(26):2999-3001.
  • Cope FW. Solid state theory of competitive diffusion of associated Na+ and K+ in cells by free cation and vacancy (hole) mechanisms, with application to nerve. Physiol. Chem. Phys., 1977, 9(4-5):389-398.
  • Cope FW. The solid-state physics of electron and ion transport in biology. Adv. Biol. Med. Phys., 1970, 13:1-42.
  • Cope FW. Solid state physical mechanisms of biological energy transduction. Ann. NY Acad. Sci., 1974, 227:636-640.
  • Cope FW. Solid state physical replacement of Hodgkin-Huxley theory. Phase transformation kinetics of axonal potassium conductance. Physiol. Chem. Phys., 1977, 9(2):155-160.
  • Nishimura M. [Energy transfer in solid-state and membrane systems in photosynthesis]. Seikagaku. 1968, 40(8):347-356. (Art. in Japan).
  • Brunori M, Santucci R, Campanella L, Tranchida G. Membrane-entrapped microperoxidase as a 'solid-state' promoter in the electrochemistry of soluble metalloproteins. Biochem. J., 1989, 264(1):301-304
  • Bando H, Hisada H, Ishida H, Hata Y, Katakura Y, Kondo A. Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture. Appl. Microbiol. Biotechnol., 2011, 92(3):561-569.
  • Ishida H, Hata Y, Kawato A, Abe Y. Improvement of the glaB promoter expressed in solid-state fermentation (SSF) of Aspergillus oryzae. Biosci. Biotech. Biochem., 2006, 70(5):1181-1187.
  • Martin CR. Nanomaterials: a membrane-based synthetic approach. Science, 1994, 266(5193):1961-1966.
  • Cope FW. Biological sensitivity to weak magnetic fields due to biological superconductive Josephson junctions? Physiol. Chem. Phys., 1973, 5(3):173-176.
  • Cope FW. Superconductivity - a possible mechanism for non-thermal biological effects of microwaves. J. Microw. Power., 1976, 11(3):267-270.
  • Cope FW. On the relativity and uncertainty of distance, time, and energy measurements by man. (1) Derivation of the Weber psychophysical law from the Heisenberg uncertainty principle applied to a superconductive biological detector. (2) The reverse derivation. (3) A human theory of relativity. Physiol. Chem. Phys., 1981, 13(4):305-311.
  • Cope FW. Enhancement by high electric fields of superconduction in organic and biological solids at room temperature and a role in nerve conduction? Physiol. Chem. Phys., 1974, 6(5):405-410.
  • Cope FW. Discontinuous magnetic field effects (Barkhausen noise) in nucleic acids as evidence for room temperature organic superconduction. Physiol. Chem. Phys., 1978, 10(3):233-246.
  • Cope FW. Preliminary studies of magnetic field facilitation of electric conduction in electrically switched "on" dye films that may be room-temperature superconductors. Physiol. Chem. Phys., 1982, 14(5):423-430.
  • Maugh TH New organic superconductor. Science. 1984, 226(4670):37.
  • Crabtree GW, Carlson KD, Williams JM. Organic superconductor. Science, 1984, 226(4674):494.
  • Wudl F, Nalewajek D, Troup JM, Extine MW. Electron Density Distribution in the Organic Superconductor (TMTSF)2AsF6. Science, 1983, 222(4622):415-417.
  • Dunitz JD. Electron Density Distribution in the Organic Superconductor (TMTSF)2AsF6: Fact and Fancy. Science, 1985 Apr 19; 228(4697):353-354.
  • Marton JP. Conjectures on superconductivity and cancer. Physiol. Chem. Phys., 1973, 5(3):259-270
  • Alexiou A, Rekkas J. Superconductivity in human body; myth or necessity. Adv. Exp. Med Biol., 2015, 822:53-58.
  • Bystrov VS, Ovtchinnikova GI, Tazieva TR, Soloshenko AN, Pirogov YA, Novik VK. Bioferroelectricity and related problems: Hydrogen-bonded ferroelectric-like systems. Ferroelectrics, 2001, 258(1):79-88.
  • Bystrov V, Bystrova N. Bioferroelectricity and optical properties of biological systems. Adv. Org. Inorg. Opt. Mat., 2003, 5122:132-136.
  • Bystrov VS. Models of proton dynamics and superprotonic/ionic conduction in hydrogen-bonded ferroelectrics and related (biological) systems. 1. Soliton dynamics in hydrogen-bonded systems. Ferroelectrics Lett. Sec., 2000, 27(5-6):147-159.
  • Tuszynski JA., Craddock TJA, Carpenter EJ. Bio-ferroelectricity at the nanoscale. J. Comput. Theor. Nanosci., 2008, 5(10):2022-2032.
  • Tokimoto T, Shirane K. Ferroelectric diffused electrical bilayer model for membrane excitation. Ferroelectrics, 1993, 141(1):297-305.
  • Leuchtag HR. Fit of the dielectric anomaly of squid axon membrane near heat-block temperature to the ferroelectric Curie-Weiss law. Biophys. Chem., 1995, 53(3):197-205.
  • Tokimoto T Shirane K. Ferroelectric diffused electrical bilayer model for membrane excitation II. Voltage clamped responses. Ferroelectrics, 1993, 146(1):73-80.
  • Bdikin I, Bystrov V, Kopyl S, Lopes RPG, Delgadillo I, Gracio J, Mishina E, Sigov A, Kholkin AL. Evidence of ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes. Appl. Phys. Lett., 2012, 100(4): 043702-1-043702-4.
  • Bystrov VS, Paramonova E, Bdikin I, Kopyl S, Heredia A, Pullar RC, Kholkin AL. Bioferroelectricity: diphenylalanine peptide nanotubes computational modeling and ferroelectric properties at the nanoscale. Ferroelectrics, 2012, 440(1):3-24.
  • Bystrov V, Bystrova N, Kisilev D, Paramonova E, Kuhn M, Kleim H, Kholkin A. Molecular model of polarization switching and nanoscale physical properties of thin ferroelectric Langmuir-Blodgett P (VDF-TrFE) films. Integr. Ferroelectrics, 2008, 99(1):31-40.
  • Turina AV, Clop PD, Perillo MA. Synaptosomal membrane-based Langmuir-Blodgett films: a platform for studies on γ-aminobutyric acid type A receptor binding properties. Langmuir, 2015, 31(5):1792-1801.
  • Pavinatto FJ, Caseli L, Pavinatto A, dos Santos DS Jr, Nobre TM, Zaniquelli ME, Silva HS, Miranda PB, de Oliveira ON Jr. Probing chitosan and phospholipid interactions using Langmuir and Langmuir-Blodgett films as cell membrane models. Langmuir, 2007, 23(14):7666-7671.
  • Brosseau CL, Leitch J, Bin X, Chen M, Roscoe SG, Lipkowski J. Electrochemical and PM-IRRAS a glycolipid-containing biomimetic membrane prepared using Langmuir-Blodgett/Langmuir-Schaefer deposition. Langmuir, 2008, 24(22):13058-13067.
  • Hill K, Pénzes CB, Schnöller D, Horváti K, Bosze S, Hudecz F, Keszthelyi T, Kiss E. Characterisation of the membrane affinity of an isoniazide peptide conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipids Langmuir monolayer model. Phys. Chem. Chem. Phys., 2010, 12(37):11498-11506.
  • Kramarov SO, Dashko YV. Contribution of some relaxation processes to the fracture energy of segnetoelectric materials. Strength of Materials, 1987, 19(10):1384-1388.
  • Samoilovich MI, Rinkevich AB, Bovtun V, Belyanin AF, Kempa M, Nuzhnyy D, Tsvetkov MY, Kleshcheva SM. Optical, magnetic, and dielectric properties of opal matrices with intersphere nanocavities filled with crystalline multiferroic, piezoelectric, and segnetoelectric materials. Russ. J. Gen. Chem., 2013, 83(11):2132-2147.
  • Leuchtag HR. Indications of the existence of ferroelectric units in excitable-membrane channels. J. Theor. Biol., 1987. 127(3):321-340.
  • Leuchtag HR. Phase transitions and ion currents in a model ferroelectric channel unit. J. Theor. Biol., 1987, 127(3):341-359.
  • Bystrov VS. Ferroeleciric phason model of sodium channels in biomemberanes. Ferroelectr. Lett. Sect., 1992, 13(6):127-136.
  • Bystrov V, Rolov B, Yurkevich V. Photoferroelectric phenomena in ferroelectrics semiconductors caused by fluctuons and phasons. Ferroelectrics, 1984, 55(1):299-302.
  • Bystrov VS, Leuchtag HR. Bioferroelectricity: Modeling the transitions of the sodium channel. Ferroelectrics, 1994, 155(1):19-24.
  • Bystrov VS, Lakhno VD, Molchanov M. Ferroelectric active models of ion channels in biomembranes. J. Theor. Biol., 1994, 168(4):383-393.
  • Bystrov VS. Ferroelectric liquid crystal models of ion channels and gating phenomena in biological membranes. Ferroelectrics Lett. Sect., 1997, 23(3-4):87-93.
  • Leuchtag HR. Bioferroelectricity in models of voltage-dependent ion channels. Ferroelectrics, 2000, 236(1):23-33.
  • Leuchtag HR, Bystrov VS. Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: Bioferroelectricity and superionic conduction. Ferroelectrics, 1999, 220(1):157-204.
  • Bystrov VS, Leuchtag H. R. Phase transitions in the ferroelectric-active model of ion channels of biomembranes. Ferroelectrics, 1996, 186(1):305-307.
  • Leuchtag HR. Do sodium channels in biological membranes undergo ferroelectric-superionic transitions? IEEE 7th International Symposium on Applications of Ferroelectrics (Urbana-Champaign, IL, 1990), p. 279-283.
  • Lomov AA, Shitov NV, Bushuev VA, Baranov AI. Structural phase transition in a surface layer of cesium deuterosulfate single crystals. JETP Lett., 1992, 55(5):296-300.
  • Kirpichnikova LF, Polomska M, Volyak Y, Hilczer B. On the characteristic changes in the domain structure and conductivity of CsDSO4 crystals near the superionic phase transition. JETP Lett., 1996, 63(11):912-916.
  • Wozniak MA, Chen CS. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Molec. Cell Biol., 2009, 10:34-43.
  • Bourgine P., Lesne A. (Eds.) Morphogenesis: Origins of Patterns and Shapes. Heidelberg, Springer Science & Business Media, 2011, 346 p.
  • Rolov B, Ivin V, Lorencs Y. Physics of ferroelectric liquids. Ferroelectrics, 1984, 55(1):159-162.
  • Klapp S, Forstmann F. Stability of ferroelectric fluid and solid phases in the Stockmayer model. EPL (EuroPhysics Letters), 1997, 38(9):663-668.
  • Petschek RG, Wiefling KM. Novel ferroelectric fluids. Phys. Rev. Lett., 1987, 59(3): 343-346.
  • Clark NA, Lagerwall ST. Physics of ferroelectric fluids: the discovery of a high-speed electro-optic switching process in liquid crystals. Recent Developments in Condensed Matter Physics, 1981, 4:309-319.
  • Cantillon-Murphy P, Wald LL, Adalsteinsson E, Zahn M. Heating in the MRI environment due to superparamagnetic fluid suspensions in a rotating magnetic field. J. Magn. Magn. Mater., 2010, 322(6):727-733.
  • King LB, Meyer E, Hopkins MA, Hawkett BS, Jain N. Self-assembling array of magnetoelectrostatic jets from the surface of a superparamagnetic ionic liquid. Langmuir, 2014, 30(47):14143-14150
  • Hartmann P, Donkó Z, Rosenberg M, Kalman GJ. Waves in two-dimensional superparamagnetic dusty plasma liquids. Phys. Rev. E: Stat. Nonlin. Soft Mat. Phys., 2014, 89(4):043102-1-043102-9.
  • Tokimoto T, Shirane K, Kushibe H. Self-organized chemical model and approaches to membrane excitation. Ferroelectrics, 1999, 220(1):273-289.
  • Cope FW. A theory of ion transport across cell surfaces by a process analogous to electron transport across liquid-solid interfaces. Bull. Math. Biophys., 1965, 27:99-109.

Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/143/8(1)-25-38e.pdf