Vol. 8, №1, 2016
РусскийEnglish

RADIOELECTRONICS



SOUNDING SIGNALS FOR THE ACTIVE LOCATION OF HIGH SPATIAL RESOLUTION
Vladislav V. Shcherbakov, Anatoly F. Solodkov

JSC “Center VOSPI”, http://www.centervospi.ru
117342 Moscow, Russian Federation
info@centervospi.ru
Anatoly A. Zadernovsky
Moscow Technological University, MIREA, Department of physics, http://mirea.ru
119454 Moscow, Russian Federation
zadernovsky@mirea.ru

Received 08.06.2016
Abstract. We present experimental and theoretical results on signal transmission in analog fiber-optic links (AFOLs) with direct or external RF/microwave modulation of laser light intensity, transportation of the optical signal through a fiber and direct detection of the optical signal by a photodiode at receiver end of the fiber. We consider in detail the linear and nonlinear signal distortions caused by the group velocity dispersion of light waves in the optical fiber, by the frequency chirp of light produced by directly modulated semiconductor laser and by the intrinsic nonlinearity of electro-optic Mach-Zehnder modulator. Theoretical calculations are in a good agreement with the experimental results and will be useful for the engineering design of analog fiber-optic links.

Keywords: analog fiber-optic links, frequency chirp of laser light, dispersive signal distortions, Mach-Zehnder modulator

PACS: 85.60.Bt

Bibliography – 25 references

RENSIT, 2016, 8(1):9-24 DOI: 10.17725/rensit.2016.08.009
REFERENCES
  • Meslener GJ. Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection. IEEE J. Quantum Electron., 1984, 20(10):1208-1216.
  • Wang J, Petermann K. Small signal analysis for dispersive optical fiber communication systems. Journal of Lightwave Technology, 1992, 10(1):96-100.
  • Schmuck H. Comparison of optical millimetre-wave system concepts with regard to chromatic dispersion. Electronics Letters, 1995, 31(21):1848-1849.
  • Gliese U, Norskov S, Nielsen TN. Chromatic dispersion in fiber-optic microwave and millimeter-wave links. IEEE Transactions on microwave theory and techniques, 1996, 44(10):1716-1724.
  • Park J, Sorin WV, Lau KY. Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission. Electronics Letters, 1997, 33(6):512-512.
  • Smith GH, Novak D, Ahmed Z. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Transactions on microwave theory and techniques, 1997, 45(8):1410-1415.
  • Wake D, Lima CR, Davies PA. Optical generation of millimeter-wave signals for fiber-radio systems using a dual-mode DFB semiconductor laser. IEEE Transactions on microwave theory and techniques, 1995, 43(9):2270-2276.
  • Hofstetter R, Schmuck H, Heidemann R. Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation. IEEE Transactions on microwave theory and techniques, 1995, 43(9):2263-2269.
  • Agrawal GP. Nonlinear Fiber Optics. New York, Academic Press, 2013, 648 p.
  • Koch TL, Bowers JE. Nature of wavelength chirping in directly modulated semiconductor lasers. Electronics Letters, 1984, 20(25):1038-1041.
  • Agrawal GP, Dutta NK. Long-wavelength Semiconductor Lasers. Boston, Kluwer Academic Publishers, 2013, 616 p.
  • Petermann K. Laser Diode Modulation and Noise. Dordrecht, Kluwer Academic Publishers, 1991, 315 p.
  • Hilt A, Udvary E, Berceli T. Harmonic distortion in dispersive fiber–optical transmission of microwave signals. Proceedings of International Topical Meeting on Microwave Photonics (Budapest, Hungary 2003), p. 151-154.
  • Peral E, Yariv A. Large-signal theory of the effect of dispersive propagation on the intensity modulation response of semiconductor lasers. Journal of Lightwave Technology, 2000, 18(1):84-89.
  • Bateman H, Erdelyi A. Higher Transcendental functions, v. 2. New York, Mc Graw-Hill book company, 1953, 292 p.
  • Bjerkan L, Royset A, Hafskjaer L, Myhre D. Measurement of laser parameters for simulation of high-speed fiberoptic systems. Journal of Lightwave Technology, 1996, 14(5):839-850.
  • Royset A, Bjerkan L, Myhre D, Hafskjaer L. Use of dispersive optical fiber for characterization of chirp in semiconductor lasers. Electron. Lett., 1994, 30(9):710-712.
  • Srinivasan RC, Cartledge JC. On using fiber transfer functions to characterize laser chirp and fiber dispersion. IEEE Photon. Technol. Lett., 1995, 7(11):1327-1329.
  • Saleh BEA, Teich MC. Fundamentals of photonics. New York, John Wiley & Sons Inc., 1991, 947 p.
  • Koyama F, Iga K. Frequency chirping in external modulators. Journal of Lightwave Technology, 1988, 6(1):87-93.
  • Provost J-G, Grillot F. Measuring the chirp and the linewidth enhancement factor of optoelectronic devices with a Mach–Zehnder interferometer. IEEE Photonics Journal, 2011, 3(3):476-487.
  • Zi-hang Zhu, Shang-hong Zhao, Zhou-shi Yao, Qing-gui Tan, Yong-jun Li, Xing-chun Chu, Xiang Wang, Gu-hao Zhao. Nonlinearity modelling of an on-board microwave photonics system based on Mach-Zehnder modulator. Optoelectronics Letters, 2012, 8(6):441-444.
  • Yejun Fu, Xiupu Zhang, Bouchaib Hraimel, Taijun Liu, Dongya Shen. Mach-Zehnder: a review of bias control techniques for Mach-Zehnder modulators in photonic analog links. IEEE Microwave Magazine, 2013, 14(7):102-107.
  • Svarny J. Bias driver of the Mach–Zehnder intensity electro–optic modulator, based on harmonic analysis. Advances in robotics, mechatronics and circuits (Santorini Island, Greece, 2014), p. 184-189.
  • Villafranca A, Lasobras J, Garcés I. Precise characterization of the frequency chirp in directly modulated DFB lasers. Proceedings of 6th Spanish Conference on Electronic Devices (San Lorenzo de El Escorial, Madrid, Spain 2007), p. 173-176.


Full-text electronic version of this article - web site http://en.rensit.ru/vypuski/article/143/8(1)-9-24e.pdf