Vol. 6, №1, 2014


Sheka Elena F.
Peoples’ Friendship University of Russia, General Physics Department, www.rudn.ru
Moscow 117198, Russian Federation
Rozhkova Natalia N.
Institute of Geology, Karelian Research Centre RAS, www.igkrc.ru
Petrozavodsk 185910, Russian Federation

Received 21.02.2014
Shungite is presented as a natural carbon allotrope of a multilevel fractal structure that is formed by a successive aggregation of ~1 nm reduced graphene oxide nanosheets. Turbostratic stacks of the sheets of ~1.5 nm in thickness and globular composition of the stacks of ~6 nm in size determine the secondary and tertiary levels of the structure. Aggregates of globules of tens of nanometers complete the structure. Molecular theory of graphene oxide, supported by large experience gained by the modern graphene science, has led to the foundation of the suggested presentation. The microscopic view has found a definite confirmation when analyzing the available empirical appearance of shungite. To our knowledge, this is the first time a geological process is described at quantum level.

Keywords: shungite; reduced graphene oxide; molecular theory.

PACS: 68.35.BP, 68.65.PQ, 82.20.WT

Bibliography – 51 references

2014, 6(1):3-17
  • Rozhkova NN. Nanouglerod shungitov [The nanocarbon of shungites]. Petrozavodsk, KarRC RAS Publ., 2011,
  • Rozhkova NN, Gribanov AV, Khodorkovskii MA. Water mediated modification of structure and physical chemical properties of nanocarbons. Diamond Relat. Mater., 2007, 16:2104-2108.
  • Rozhkova NN, Emel’yanova GI, Gorlenko LE, Jankowska A, Korobov MV, Lunin VV. Structural and physico-chemical characteristics of shungite nanocarbon as revealed through modification. Smart Nanocomposites, 2010, 1:71-90.
  • Rozhkov SP, Rozhkova NN, Sukhanova GA, Borisova AG, Goryunov AG. DSC data on interaction of carbon nanoparticles with protein molecules. In: Nanoparticles in Condensed Media, 134-139. P.A. Vityaz, ed. Minsk, Publishing Center BSU, 2008.
  • Rozhkova NN, Gorlenko LE, Emel’yanova GI, Korobov MV, Lunin VV, Osawa E. The effect of ozone on the structure and physico-chemical properties of ultradisperse diamond and shungite nanocarbon elements. Pure Appl. Chem., 2009, 81:2093-2105.
  • Avdeev MV, Tropin TV, Aksenov VL, Rosta L, Garamus VM, Rozhkova NN. Pore structures in shungites as revealed by small-angle neutron scattering. Carbon, 2006, 44:954-961.
  • Kovalevski VV, Rozhkova NN, Zaidenberg AZ, Yermolin AN. Fullerene-like structures in shungite and their physical properties. Mol. Mat., 1994, 4:77-80.
  • Rozhkova NN, Yemel’yanova GI, Gorlenko LE, Gribanov AV, Lunin VV. From stable aqueous dispersion of carbon nanoparticles to the clusters of metastable carbon of Shungites. Glass Phys. Chem., 2011, 37:621-626.
  • Rozhkova NN. Aggregation and stabilization of shungite carbon nanoparticles. Ecol. Chem., 2012, 4:240-251.
  • Sheka EF, Rozhkova NN, Natkaniec I, Holderna-Natkaniec K. Inelastic neutron scattering study of reduced graphene oxide of natural origin. Pis'ma ZhETF, 2014, 99:754-759 (in Russ.).
  • Shmidt FK. Fraktaly v fizicheskoy khimii geterogennykh system i processov [Fractals in the physical chemistry of heterogeneous systems and processes]. Irkutsk, IrkGU Publ., 2000.
  • Pimental MA, Dresselhaus G, Dresselhaus MS, Cancado LA, Jorio A, Sato R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys.Chem.Chem.Phys., 2007, 9:1276-1290.
  • Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science, 2009, 323:610-613.
  • Amara ABH. X-ray diffraction, infrared and TGA/DTG analysis of hydrated nacrite. Clay Minerals, 1997, 32:463-470.
  • Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J-J. Focusing on luminescent grapheme quantum dots: current status and future perspectives. Nanoscale, 2013, 5:4015-4039.
  • Belousova IM, Kislyakov IM, Videnichev DA, Rozhkova NN, Tupolev AG. Shungite carbon as a material for optical limiting of high intensity laser radiation in the visible and near infrared region. Abstracts, 9th Biennal Int Workshop on Fullerenes and Atomic Clusters. (St. Petersburg, Russia) Ioffe Phys-Techn Inst. RAS, 2009, p. 222.
  • Kamanina NV, Serov SV, Shurpo NA, Rozhkova NN. Photoinduced changes in refractive index of nanostructured shungite-containing polyimide systems. Tech. Phys. Lett., 2011, 37:949-951.
  • Kamanina NV, Serov SV, Shurpo NA, Likhomanova SV, Timonin DN, Kuzhakov PV, Rozhkova NN, Kityk IV, Plucinski KJ, Uskokovic DP. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J. Mater. Sci.: Mater.Electron, 2012, 23:1538-1542.
  • Razbirin BS, Rozhkova NN, Sheka EF, Nelson DK, Starukhin AN. Fractals of graphene quantum dots in photoluminescence of shungite. ZhETF, 2014, 145:838-850 (in Russ.).
  • Goryunov AS, Borisova AG, Rozhkov SP. Raman spectroscopy of bioconjugates of bovine serum albumin and shungite nanocarbon. Proc. Karelian Res. Center RAS, Exp. Biol. Ser., 2012, 2:154-158.
  • Rozhkov S, Sukhanova G, Borisova A, Rozhkova N, Goryunov A. Effects of carbon nanoparticles on protein thermostability revealed by DSC and ESR spin-labelling methods. Ann. World Conf. Carbon. France, Biarritz, 2009, p. 201.
  • Melezhik VA, Fallick AE, Filippov MM, Lepland A, Rychanchik DV, Deines YE, Medvedev PV, Romashkin AE, Strauss H. Petroleum surface oil seeps from a Paleoproterozoic petrified giant oilfield, Terra Nova, 2009, 21:119-126.
  • Kwiecińskaa B, Petersen HI. Graphite, semi-graphite, natural coke, and natural char classification – ICCP system. Int. J. Coal. Geol., 2004, 57:99-116.
  • Landis CA. Graphitization of dispersed carbonaceous material in metamorphic rocks. Contrib. Mineral Petrol., 1971, 30:34-45.
  • Diessel CFK, Offler R. Change in physical properties of coalified and graphitized phytoclasts with grade of metamorphism. Neues Jahrb. Mineral Monatsh H., 1975, 1:11-26.
  • Bianco A., Cheng H-M, Enoki T, Yu G, Hurt RH, Koratkar N. All in the grapheme family – a recommended nomenclature for two-dimensional carbon materials. Carbon, 2013, 65:1-6.
  • Sheka EF, Chernozatonskii LA. Chemical reactivity and magnetism of graphene. Int. J.Quant. Chem., 2010, 110:1938-1946.
  • Sheka EF, Chernozatonskii LA. Broken spin symmetry approach to chemical susceptibility and magnetism of graphenium species. ZhETF, 2010, 137:136-148 (in Russ.).
  • Sheka EF. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. Boca Raton, FL, CRC Press, Taylor and Francis Group, 2011.
  • Sheka EF, Popova NA. Odd-electron molecular theory of the graphene hydrogenation. J. Mol. Mod., 2012, 18:3751-3768.
  • Sheka EF, Popova NA. Molecular theory of graphene oxide. Phys. Chem. Chem. Phys., 2013, 15:13304-13322.
  • Sheka EF. Computational strategy for graphene: Insight from odd electrons correlation. Int.J. Quant. Chem., 2012, 112:3076-3090.
  • Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem.Soc. Rev., 2010, 39:228-240.
  • Hui W, Yun HH. Effect of oxygen content on structures of graphite oxides. Ind. Eng.Chem. Res., 2011, 50:6132-6137.
  • Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. Chemical functionalization of graphene and its applications. Prog. Mat. Sci., 2012, 57:1061-1105.
  • Dimiev AM, Alemany LB, Tour JM. Graphene oxide. Origin of acidity, its instability in water, and a new dynamic structural model. ACS Nano., 2013, 7:576-584.
  • Golubev AI, Romashkin AE, Rychanchik DV. Relation of carbon accumulation to Paleoproterozoic basic volcanism in Karelia (Jatulian-Ludicovian transition). Geol. Useful Minerals Karelia, 2010, 13:73-79.
  • Chen W, Zhu Z, Li S, Chen C, Yan L. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries. Nanoscale, 2012, 4:2124-2129.
  • Pan S, Aksay IA. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route. ACS Nano., 2011, 5:4073-4083.
  • Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S. Graphene based materials: Past, present and future. Prog. Mat. Sci., 2011, 56:1178-1271.
  • Ivanovskii AL. Graphene-based and graphene-like materials. Russ. Chem. Rev., 2012, 81:571-605.
  • By YZ, Shanthi M, Weiwei C, Xuesong L, Ji WS, Potts JR, Ruoff RS. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater., 2010, 22:3906-3924.
  • Filippov MM. Shungitonosnye porody Onezhskoy struktury [Shungite breed of Onega structure]. Petrozavodsk, KarRC RAS Publ., 2002.
  • Liao K-H, Mittal A, Bose S, Leighton C, Mkhoyan KA, Macosko CW. Aqueous only route toward graphene from graphite oxide. ACS Nano., 2011, 5:1253-1258.
  • Shi H, Lai L, Snook IK, Barnard AS. Relative stability of graphene nanosheets under environmentally relevant conditions. J. Phys. Chem. C, 2013, 117:15375-15382.
  • Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, Chabal YJ. The role ofintercalated water in multilayered graphene oxide. ACS Nano., 2010, 4:5861-5868.
  • Buchsteiner A, Lerf A, Pieper J. Water dynamics in graphite oxide investigated with neutron scattering. J. Phys. Chem. B., 2006, 110:22328-22338.
  • Natkaniec I, Druzbicki K, Gubin SP, Holderna-Natkaniec K, Tkachev SV, Sheka EF. IINS and DFT studies of vibrational spectra of water retained in graphene oxide. 2nd satellite, Workshop of ICNS 2013 on Dynamics of Molecules and Materials, Glasgow, Scottland, University of Glasgow, 2013, p. 21.
  • Sheka EF, Rozhkova NN, Natkaniec I, Holderna-Natkaniec K, Druzbicki K. Waterdynamics in shungite with inelastic neutron scattering. Proc. Intern. Conf. on Advanced Carbon Nanostructure, St. Petersburg, Ioffe Phys-Techn Inst RAS Publ., 2013, p. 68.
  • Gouyet J-F. Physics and Fractal Structures. Paris/New York, Masson Springer, 1996.
  • Hoffmann R. Small but strong lessons from chemistry for nanoscience. Ang. Chem. Int. Ed., 2013, 52:93-103.

Full-text electronic version of this article - web site http://elibrary.ru