Vol. 6, №1, 2014


Oshlakov V. G.
Institute of Atmosheric Optics, Siberian Branch of Russian Academy of Sciences, http://www.iao.ru
634021 Tomsk, Russian Federation
Ilyushin Ya. A.
Lomonosov Moscow State University, Faculty of Physics, http://www.phys.msu.ru,
119991 Moscow, Russian Federation,

Received 05.11.2012, revised 28.05.2013
In the presented paper, the problem of maximization of the radar target contrast due to distinctions in the scattering properties of the target and background is considered. Unified description of all the constructive elements of the locator in terms of Mueller matrices and Stokes vectors is formulated. The structural diagram of the monostatic adaptive polarization locator is presented, as well as the polarimeter principal scheme. The problem of optimal selection of the target with know polarimetric properties from the noise is considered, as well as the problem of identification of single and group targets on the background with known scattering properties. Scattering matrices of fresh wate and hydrosol at 440 nm wavelength are evaluated, and relative radar contrast of the hydrosol in the fresh water is estimated. The same problem is posed and solved for aerosol in surrounding air at two wavelength 300 and 550 nm. The possibility of enhacement of radar target contrast using available information about polarization scattering properties of the target and background is shown.

Keywords: radar target contrast, underlying surface, probe signal, polarization characteristics, Stokes vector, Mueller matrices, hydrosol, aerosol.

UDC 535.36+530.1

Bibliography - 16 references

2013, 5(2):3-14
  • Svistov VI. Radiolokatsionnye signaly i ikh obrabotka [Radar signals and their processing]. Moscow, Sov.Radio Publ., 1977, 447 p.
  • Davydov PS, Sosnovsky AA, Khaymovich IA. Aviatsionnaya radiolokatsiya. Spravochnik. [Handbook. Aviation radar]. Davydov PS (ed.). Moscow, Transport Publ., 1984, 116 p.
  • Varganov ME, Zinoviev YuS, Astanin LYu. Radar characteristics of aircraft. Tuchkov LT (ed.). Moscow, Radio i svyaz' Publ., 1985, 236 p.
  • Vakman DE. Complex signals and the uncertainty principle in radar. Moscow, Sov. radio Publ., 1965, 304 p.
  • Oshlakov VG, Eremina T. The increase of the efficiency of research tools of active radio and optical sensing. Proc. SPIE Europe Remote Sens., 6744B-90. Florence, Italy, 2007.
  • Oshlakov VG, Oshlakov VK, Eremina TA. Optimal polarization characteristics of the devices, recording the scattered radiation. Optika atmosfery i okeana, 2007, 20(7):635-640 (in Russ.).
  • Oshlakov VG, Andreev MI, Malykh DD. An adaptive lidar. Proc. SPIE, Remote Sens., 74730N, Berlin, Germany, 2009.
  • Oshlakov VG. Sposob kompleksnoy lokatsii tseli [Method for Complex Terget Location]. Patent RF no. 2416108C1: G01S13/95. Date of Fil. 25.08.2009, Bull.11, 2011.
  • Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. New York, Willey, 1983.
  • Van de Hulst HC. Light scattering by small particles. New York, Willey, 1957.
  • Oshlakov VG. Optimum measuring the scattering matrix. Optika atmosfery i okeana, 1992, 5(11):1190-1193 (in Russ.).
  • Oshlakov VG, Barkov YuG. Numerical analysis of the instrumental matrix of polarization meter. Optika atmosfery i okeana, 2002, 15(7):635-640 (in Russ.).
  • Esepkina NA, Korol'kov DV, Pariyskiy YuN. Radioteleskopy i radiometry [Radio telescopes and radiometers]. Moscow, Nauka Publ, 1973, p. 415.
  • Ivanov AP. Fizicheskie osnovy gidrooptiki [Physical Basis of Hydrooptics]. Minsk, Nauka i tekhnika Publ., 1978, p. 504.
  • Kenneth JV, Edward SF. Measurement of the Muller Matrix for Ocean Water. Appl. Opt., 1984, 23(23):4427-4439.
  • Gorchakov GI. Matrix light scattering by surface air. Izv. AN SSSR. Fizika atmosfery i okeana, 1966, 2(6):595-605 (in Russ.).

Full-text electronic version of this article - web site http://elibrary.ru