Vol. 6, №1, 2014


Sheka E. F.
Peoples’ Friendship University of Russia, http://www.rudn.ru
117198 Moscow, Russian Federation

Received 31. 03.2013
Presented by Academician of RANS S.P. Gubin

Odd electrons of benzenoid units and the correlation of these electrons having different spins are the main concepts of the molecular theory of graphene. In contrast to the theory of aromaticity, the molecular theory is based on the fact that odd electrons with different spins occupy different places in the space so that the configuration interaction becomes the central point of the theory. Consequently, a multi-determinant presentation of the wave function of the system of weakly interacting odd electrons is utterly mandatory on the way of the theory realization at the computational level. However, the efficacy of the available CI computational techniques is quite restricted in regard to large polyatomic systems, which does not allow performing extensive computational experiments. Facing the problem, computationists have addressed standard single-determinant ones albeit not often being aware of the correctness of the obtained results. The current chapter presents the molecular theory of graphene in terms of single-determinant computational schemes and discloses how reliable information about the electron-correlated system can be obtained by using either UHF or UDFT computational schemes.

Keywords: molecular theory of graphene; odd electrons; electron correlation; effectively unpaired electrons; magnetic coupling constant; graphene; magnetism; chemical modification; deformation

PACS: 31.10.+Z, 31.15.CT, 31.15.VQ, 68.65.PQ

Bibliography - 93 references

2013, 5(1):119-125

  • Hoffmann R. Small but strong lessons from chemistry for nanoscience. Ang Chem Int Ed, 2013, 52:93-103.
  • Hoffmann R. Interaction of orbitals through space and through bonds. Acc Chem Res, 1971, 4:1–9.
  • Hay PJ, Thibeault JC, Hoffmann R. Orbital interactions in metal dimer complexes. J Amer Chem Soc, 1971, 97:4884-4899.
  • Sheka E. Violation of covalent bonding in fullerenes. In: Sloot P M A, Abramson D, Bogdanov AV et al (eds). Lecture Notes in Computer Science, Computational Science – ICCS2003, Springer, Heidelberg, 2003, pp. 386-398.
  • Sheka EF. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics. Boca Raton, CRC Press, Taylor & Francis Group, 2011.
  • Sheka EF. Fullerenes as polyradicals. Internet Electronic Conference of Molecular Design 2003, http://www.biochempress.com , November 28, paper 54, 2003.
  • Sheka EF. Odd electrons and covalent bonding in fullerenes. Int J Quant Chem, 2004, 100:375-386.
  • Sheka E. Nanocarbons through computations: fullerenes, nanotubes, and graphene. In: The UNESCO-EOLSS Encyclopedia Nanoscience and Nanotechnology. Moscow, UNESCO, 2009, pp. 415-444.
  • Geim AK, Novoselov KS. The rise of graphene. Nature Materials, 2007, 6:183-191.
  • Davidson E. How robust is present-day DFT? Int J Quant Chem, 1998, 69:214-245.
  • Kaplan I. Problems in DFT with the total spin and degenerate states. Int J Quant Chem, 2007, 107:2595-603.
  • Takatsuka K, Fueno T, Yamaguchi K. Distribution of odd electrons in ground-state molecules. Theor Chim Acta, 1978, 48:175-183.
  • Staroverov VN, Davidson ER. Distribution of effectively unpaired electrons. Chem Phys Lett, 2000, 330:161-168.
  • Benard MJ. A study of Hartree–Fock instabilities in Cr2(O2CH)4 and Mo2(O2CH)4. J Chem Phys, 1979, 71:2546-56.
  • Lain L, Torre A, Alcoba DR et al. A study of the relationships between unpaired electron density, spin-density and cumulant matrices. Theor Chem Acc, 2011, 128:405-410.
  • Sheka EF, Chernozatonskii LA. Bond length effect on odd electrons behavior in single-walled carbon nanotubes. J Phys Chem A, 2007, 111:10771-10780.
  • Sheka EF. Computational strategy for graphene: Insight from odd electrons correlation. Int J Quant Chem, 2012, 112:3076-3090.
  • Zayets VA. Klaster-Z1: kvantovo-khimicheskoe programmnoe obespechenie dlya raschetov v s,p-basis [CLUSTER-Z1: Quantum-chemical software for calculations in the s,p-basis]. Kiev, Nat Ac Sci of Ukraine, Institute of Surface Chemistry Publ., 1990 (in Russ.).
  • Gao X, Zhou Z, Zhao Y et al. Comparative study of carbon and BN nanographenes: Ground electronic states and energy gap engineering. J Phys Chem A, 2008, 112:12677-82.
  • Noodleman L. Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys, 1981, 74:737-42.
  • Illas F, Moreira I de PR, de Graaf C, Barone V. Magnetic coupling in biradicals, binuclear complexes and wide-gap insolators; a survey of ab initio function and density functional theory approaches. Theor Chem Acc, 2000, 104:265-272.
  • Zvezdin AK, Matveev VM, Mukhin AA et al. Redkozemelnye iony v magnito-uporyadochennykh kristallakh (Rear Earth ions in magnetically ordered crystals). Moscow, Nauka Publ., 1985.
  • Van Fleck JH. The theory of electric and magnetic susceptibilities. Oxford, Clarendon Press, 1932.
  • Kahn O. Molecular Magnetism. New York, VCH Publ.,1993.
  • Koshino M, Ando T. Diamagnetism in disordered graphene. Phys Rev B, 2007, 75:235333 (8 pages).
  • Nair RR, Sepioni M, Tsai I-L et al. Spin-half paramagnetism in graphene induced by point defects. Nature Physics, 2012, 8:199-202.
  • Sheka EF, Chernozatonskii LA. Chemical reactivity and magnetism of graphene. Int J Quant Chem, 2010, 110:1938-1946.
  • Sheka EF, Chernozatonskii LA. Broken spin symmetry approach to chemical susceptibility and magnetism of graphenium species. J Exp Theor Phys, 2010, 110:121-132.
  • Shibayama Y, Sato H, Enoki T, Endo M. Disordered magnetism at the metal-insulator threshold in mano-graphite-based carbon materials. Phys. Rev. Lett., 2000, 84:1744-1747.
  • Enoki T, Kobayashi Y. Magnetic nanographite: an approach to molecular magnetism. J. Mat. Chem. 2005, 15:3999-4002.
  • Tada K, Haruyama J, Yang HX, Chshiev M, Matsui T, Fukuyama H. Graphene magnet realized by hydrogenated graphene nanopore arrays. Appl Phys Lett, 2011, 99:183111(3 pages).
  • Tada K, Haruyama J, Yang HX, Chshiev M, Matsui T, Fukuyama H. Ferromagnetism in hydrogenated graphene nanopore arrays. Phys Rev Lett, 2011, 107:217203 (5 pages).
  • Sheka EF, Zayets VA, Ginzburg IYa. Nanostructural magnetism of polymeric fullerene crystals. J Exp Theor Phys, 2006, 103:728-739.
  • Boeker GF. The diamagnetism of carbon tetrachloride, benzene and toluene at different temperatures. Phys Rev, 1933, 43:756-760.
  • Seach MP, Dench WA. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids. Surface & Interface Analysis, 1979, 1(1):2-11.
  • Komolov SA, Lazneva EF, Komolov AS. Low-energy electron mean free path in thin films of copper phthalocyanine. Tech Phys Lett, 2003, 29:974-976.
  • Takatsuka K, Fueno TJ. The spin-optimized SCF general spin orbitals. II. The 2 2S and 2 2P states of the lithium atom. J Chem Phys, 1978, 69:661-669.
  • Staroverov VN, Davidson ER. Biradical character of the Cope rearrangement transition state. J Am Chem Soc, 2000, 122:186-187.
  • Mayer I. On bond orders and valences in the ab initio quantum chemical theory. Int J Quant Chem, 1986, 29:73-84.
  • Dewar MJS, Thiel W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. J Am Chem Soc, 1977, 99:4899-4907.
  • Zhogolev DA, Volkov VB. Metody, algoritmy i programmy dlya kvantovo-khimicheskikh raschetov molekul [Methods, algorithms and programs for quantum-chemical Calculations of molecules]. Kiev, Naukova Dumka Publ., 1976.
  • Sheka EF, Zayets VA. The radical nature of fullerene and its chemical activity. Russ J Phys Chem, 2005, 79:2009-2014.
  • Lain L, Torre A, Alcoba DR et al. A decomposition of the number of effectively unpaired electrons and its physical meaning. Chem Phys Lett, 2009, 476:101-103.
  • Wang J, Becke AD, Smith VHJr. Eveluation of in restricted, unrestricted Hartree-Fock, and density functional based theory. J Chem Phys, 1995, 102:3477-3480.
  • Cohen AJ, Tozer DJ, Handy NC. Evaluation of in density functional theory. J Chem Phys, 2007, 126:214104 (4 pp).
  • Lobayan RM, Bochicchio RC, Torre A et al. Electronic structure and effectively unpaired electron density topology in closo-boranes: Nonclassical three-center two-electron bonding. J Chem. Theory Comp, 2011, 7:979-987.
  • Kitagawa Y, Saito T, Ito M, Shoji M, Koizumi K, Yamanaka S, Kawakami T, Okumura M, Yamaguchi K. Approximately spin-projected geometry optimization method and its application to di-chromium systems. Chem Phys Lett, 2007, 442:445-450.
  • Kitagawa Y, Saito T, Nakanishi Y et al. Spin Contamination Error in Optimized Geometry of Singlet Carbene (1A1) by Broken-Symmetry Method. J Phys Chem A, 2009, 113:15041-15046.
  • Gross L, Mohn F, Moll N, Liljenroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science, 2009, 325:1110-1114.
  • ‘Olympic rings’ molecule olympicene in striking image. BBC News Science and Environment (2012-05-28).
  • Fujita M, Wakabayashi K, Nakada K, Kusakabe K. Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn, 1996, 65:1920-1923.
  • Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys Rev B, 1996, 54:17954-17961.
  • Coleman J. A new solution to graphene production. SPIE Newsroom, 2008, DOI: 10.1117/2.1200810.1336.
  • The noise about graphene. Berkeley Lab, News Center, October 15, 2010.
  • Sheka EF. ‘Chemical portrait’ of fullerene molecule. J Str Chem, 2006, 47:600-607.
  • Sheka EF. Chemical susceptibility of fullerenes in view of Hartree-Fock approach. Int Journ Quant Chem, 2007, 107:2803-2816.
  • Sheka EF, Chernozatonskii LA. Chemical reactivity and magnetism of graphene. Int J Quant Chem, 2010, 110:1938-1946.
  • Sheka EF, Chernozatonskii LA. Broken spin symmetry approach to chemical susceptibility and magnetism of graphenium species. J Expt Theor Phys, 2010, 110:121-132.
  • Allouche A, Jelea A, Marinelli F et al. Hydrogenation and dehydrogenation of graphite (0001) surface: a density functional theory study. Physica Scripta T, 2006, 124:91-94.
  • Sheka EF. Stepwise computational synthesis of fullerene C60 derivatives. Fluorinated fullerenes C60F2k. J Expt Theor Phys, 2010, 111:395-412.
  • Sheka EF, Popova NA. Odd-electron molecular theory of the graphene hydrogenation. J Mol Mod, 2012, 18:3751-3768.
  • Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 2009, 323:610-613.
  • Sheka EF. Computational synthesis of hydrogenated fullerenes from C60 to C60H60. J Mol Mod, 2011, 17:1973-1984.
  • Sheka EF, Popova NA. When a covalent bond is broken? arXiv:1111.1530v1 [physics.chem-ph], 2011.
  • Sheka EF, Popova NA. Molecular theory of graphene oxide. arXiv:1212.6413 [cond-mat.mtrl-sci], 2012.
  • Sheka EF, Popova NA. Molecular theory of graphene oxide. Phys Chem Chem Phys, 2013, 15:13304-13322.
  • Dreyer DS, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev, 2010, 39:228–240.
  • Zhu Y, Shanthi M, Weiwei C, Li X, Suk JW, Ruoff RS. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv Mater, 2010, 22:3906–3924.
  • Kuila T, Mishra AK, Khanra P, Kim NH, Lee JH. Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale, 2013, 5:52–71.
  • Wang H, Hu IH. Effect of Oxygen Content on Structures of Graphite Oxides. Ind Eng Chem Res, 2011, 50:6132–6137.
  • Fujii S, Enoki T. Cutting of Oxidized Graphene into Nanosized Pieces. J Am Chem Soc, 2010, 132:10034–10041.
  • Xu Z, Bando Y, Liu L, Wang W, Bai X, Goldberg D. Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano, 2011, 5:4401–4406.
  • Wang S, Wang R, Liu X, Wang X, Zhang D, Guo Y, Qiu X. Optical Spectroscopy Investigation of the Structural and Electrical Evolution of Controllably Oxidized Graphene by a Solution Method. J Phys Chem C, 2012, 116:10702-10707.
  • Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastrogiovanni D, Granozzi G, Garfunkel E, Chhowalla M. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Func Mat, 2009, 19:2577-2583.
  • Sheka EF. Computational synthesis of hydrogenated fullerenes from C60 to C60H60. J Mol Mod, 2010, 17:1973-1984.
  • Wang L, Zhao J, Sun Y-Y, Zhang SB. Characteristics of Raman spectra for graphene oxide from ab initio simulations. J Chem Phys, 2011, 135:184503 (5 pages).
  • Saxena S, Tyson TA, Negusse E. Investigation of the Local Structure of Graphene Oxide. J Phys Chem Lett, 2010, 1:3433–3437.
  • Ambrosi A, Chee SY, Khezri B, Webster RD, Spfer Z, Pumera M. Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew Chem Int Ed, 2012, 51:500-503.
  • Lu N, Li Zh. Graphene oxide: Theoretical perspectives. In: Zeng J, Zhang R-Q, Treutlein HR (eds.). Quantum Simulations of Materials and Biological Systems. Dordrecht, Springer Science + Business Media, 2012, pp 69-84.
  • Levy N, Burke SA, Meaker KL, Panlasigui M, Zettl A, Guinea F, Neto AHC, Crommie MF. Strain-Induced Pseudo–Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles. Science, 2010, 329:544-547.
  • Georgiou T, Britnell L, Blake P, Gorbachev RV, Gholinia A, Geim AK, Casiraghi C, Novoselov KS. Graphene bubbles with controllable curvature. Appl Phys Lett, 2011, 99:093103 (3 pages).
  • Koenig SP, Boddeti NG, Dunn ML, Bunch JS. Ultrastrong adhesion of graphene membranes. Nature Nanotechn., 2011, 6:543-546.
  • Sheka EF, Popova NA, Popova VA, Nikitina EA, Shaymardanova LKh. Structure-sensitive mechanism of nanographene failure. J Exp Theor. Phys, 2011, 112:602-611.
  • Sheka EF, Popova NA, Popova VA, Nikitina EA, Shaymardanova LK. A tricotage-like failure of nanographene. J Mol Mod, 2010, 17:1121-1131.
  • Popova NA, Sheka EF. Mechanochemical reaction in graphane under uniaxial tension. J Phys Chem C, 2011, 115:23745-23754.
  • Sheka EF, Shaymardanova LKh. C60-based composites in view of topochemical reactions. J Mater Chem, 2011, 21:17128-17146.
  • Sheka EF. Topochemistry of spatially extended sp2 nanocarbons: fullerenes, nanotubes, and graphene. In: Ashrafi AR, Cataldo F, Iranmanesh A, Ori O (Eds.). Topological Modelling of Nanostructures and Extended Systems. Carbon Materials: Chemistry and Physics, vol. 7. Dordrecht-Heidelberg-Ney York-London, Springer, 2013, pp. 137-198.
  • Sheka EF, Razbirin BS, Rozhkova NN et al. [Nanophotonics of graphene quantum dots]. Trudy 15 mezhdunarodnoy konferentsii “Lasernaya optika-2012” [Proc. 15th Intern. Conf. «Laser Optics-2012»]. St.Petersburg, 2012, pp. 135-139 (in Russ.).
  • Sheka EF, Rozhkova NN. New carbon allotrope shungite as loosely packed fractal nets of graphene-base quantum dots. 2013. To be published.
  • Sheka EF. May silicene exist? http://arXiv.org/abs/0901.3663, 2009.
  • Sheka EF. Why sp2-like nanosilicons should not form: Insight from quantum chemistry. Int J Quant Chem, 2013, 113:612-618.
  • Tang S, Cao Z. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Phys Chem Chem Phys, 2012, 14:16558-16565.
  • Hsu H-C, Shown I, Wei H-Y, Chang YC, Du H-Y, Lin Y-G, Tseng C-A, Wang C-H, Chen L-C, Lin Y-C, Chen K-H. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale, 2013, 5:262-268.

Full-text electronic version of this article - web site http://elibrary.ru