Vol. 6, №1, 2014


Sadovskii V.M.
Institute of Computational Modelling SB RAS
660036 Krasnoyarsk, Russian Federation
Sadovskaya O.V.
Institute of Computational Modelling SB RAS
660036 Krasnoyarsk, Russian Federation
Varygina M.P.
Institute of Computational Modelling SB RAS
660036 Krasnoyarsk, Russian Federation

Received 08.04.2013
Represented by a Academician of RANS V.I. Erofeev 08.04.2013

In the framework of mathematical model of a block medium with elastic blocks interacting through compliant viscoelastic interlayers and its approximation on the basis of equations of the Cosserat continuum, the problems of periodic perturbation of a layer and of a half-space under the action of distributed and localized surface loads are solved numerically. Parallel algorithms for multiprocessor computer systems of cluster type and for systems with graphics accelerators are applied. The simple formulas are suggested to determine the elasticity coefficients of the moment continuum by given characteristics of the materials of blocks and interlayers, which provide a good correspondence of the wave fields received by means of the exact and approximate models. By the analysis of numerical solutions it is shown that a multiblock medium possesses a resonant frequency of rotational motion of blocks, which does not depend on the size of a massif and on the boundary conditions at its surface, and is, therefore, the phenomenological parameter of a material.

Keywords: block medium, Cosserat continuum, dynamics, viscoelasticity, rotational motion, resonance frequency, parallel program system.

UDC 539.3

Bibliography - 21 references

2013, 5(1):111-118

  • Sadovskii VM. Estestvennaya kuskovatost gornoy porody [The natural lumpiness of rock]. DAN USSR, 1979, 247(4):829-831 (in Russ.).
  • Kunin IA. Teoriya uprugosti sred s mikrostrukturoy [The theory of elasticity of media with microstructure]. Moscow, Nauka Publ., 1975, 416 p.
  • Brekhovskikh LM. Volny v sloistykh sredakh [Waves in Layered Media]. Moscow, Nauka Publ., 1973, 344 p.
  • Goldin SV. Seysmicheskie volny v anizotropnykh sredakh [Seismic waves in anisotropic media]. Novosibirsk, SB RAS Publ., 2008, 375 p.
  • Kurlenya MV, Oparin VN, Vostrikov VI. O formirovanii uprugikh volnovykh paketov pri impulsnom vozbuzhdenii blochnykh sred [On the formation of elastic wave packets in the pulsed excitation block environments. Pendulum Waves]. DAN USSR, 1993, 333(4):3-13 (in Russ.).
  • Aleksandrova NI, Chernikov AG, Sher EN Eksperimentalnaya proverka odnomernoy raschetnoy modeli rasprostraneniya voln v blochnoy srede [Experimental verification of a one-dimensional computational model of wave propagation in block medium]. Physical and technical problems of mining, 2005, 3:46-55 (in Russ.).
  • Aleksandrova NI, Sher EN, Chernikov AG. . Vliyanie vyazkosti prosloek na rasprostranenie nizkochastotnykh mayatnikovykh voln v blochnykh ierarkhicheskikh sredakh [The effect of interlayers viscosity on the propagation of low-frequency pendulum waves in block hierarchical environments]. Physical and technical problems of mining, 2008, 3:3-13 (in Russ.).
  • Varygina MP, Pokhabova MA, Sadovskaya OV, Sadovskii VM.Vychislitelnye algoritmy dlya analiza uprugikh voln v blochnykh sredakh s tonkimi prosloykami [Numerical algorithms for the analysis of elastic wave propagation in block media with thin interlayers]. Computational methods and programming: new computing technologies, 2011, 12(2):190-197 (in Russ.).
  • Kulikovskii AG, Pogorelov NV, Semenov AYu. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh system uravneniy [Mathematical problems in the numerical solution of hyperbolic systems of equations]. Moscow, Fizmatlit Publ., 2001, 607 p.
  • Sadovskii VM, Sadovskaya OV. Programmny kompleks dlya resheniya dvumernykh uprugoplasticheskikh zadach dinamiki sypuchikh sred (2Dyn_Granular) [The software package for the solution of two-dimensional elastoplastic problems of the dynamics of granular media]. Certificate of state registration of computer software no 2012613989, 28.04.2012.
  • Cosserat E., Cosserat F. Théorie des Corps Déformables. In: Chwolson's Traité Physique. Paris, Librairie Scientifique A. Hermann et Fils, 1909, 953-1173.
  • Erofeev VI. Wave Processes in Solids with Microstructure. New Jersey-London-Singapore-Hong Kong-Bangalore-Taipei, World Scientific Publishing, 2003, 256 p.
  • Altenbach H, Altenbach J, Kissing W. Mechanics of Composite Structural Elements. Berlin, Springer, 2004, 468 p.
  • Diebels S., Steeb H, Ebinger T. Volume and surface based homogenization procedures for Cosserat continua. Proc. Appl. Math. Mech., 2003, 3:266-267.
  • Pavlov IS, Potapov AI. Strukturnye modeli v mekhanike nanokristallicheskikh sred [Structural models of the mechanics of nanocrystalline media]. DAN, 2008, 421(3):348-352 (in Russ.).
  • Branke D, Brummund J, Haasemann G, Ulbricht V. Obtaining Cosserat material parameters by homogenization of a Cauchy continuum. Proc. Appl. Math. Mech., 2009, 9:425-426.
  • Reis FD, Ganghoffer J-F. Obtaining Cosserat material parameters by homogenization of a Cauchy continuum. In: Mechanics of Generalized Continua (ed. by H. Altenbach, GA. Maugin, V. Erofeev), Ser.: Advanced Structured Materials, V. 7. Berlin-Heidelberg, Springer, 2011, pp. 193-217.
  • Sadovskaya OV, Sadovskii VM. Analysis of rotational motion of material microstructure particles by equations of the Cosserat elasticity theory. Acoustical Physics, 2010, 56(6): 942-950.
  • Sadovskaya O, Sadovskii V. Mathematical Modeling in Mechanics of Granular Materials. Ser.: Advanced Structured Materials, V. 21. Heidelberg-New York-Dordrecht-London, Springer, 2012, 390 p.
  • Sadovskii VM, Sadovskaya OV, Varygina MP. Programmny kompleks dlya rascheta trekhmernykh dinamicheskikh zadach momentnoy teorii uprugosti (3Dyn_Cosserat) [The software package for calculate three-dimensional dynamic problems of the moment theory of elasticity (3Dyn_Cosserat)]. Certificate of state registration of computer software no 2012614824, 30.05.2012.
  • Sarkisyan SO. Obshchaya teoriya mikropolyarnykh uprugikh tonkikh obolochek [The general theory of micropolar thin elastic shells]. Physical mesomechanics, 2011, 14(1):55-66 (in Russ.).

Full-text electronic version of this article - web site http://elibrary.ru