Vol. 6, №1, 2014


Ivanova E. A.
Saint-Petersburg State Polytechnical University, http://www.spbstu.ru
195251, Saint-Petersburg, Russian Federation
Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, http://www.ipme.ru
199178, Saint-Petersburg, Russia Federation

Received 08.04.2013
Represented by a Academician of RANS V.I. Erofeev 08.04.2013

In continuum mechanics the temperature is considered to be a quantity measured by thermometer and any mechanical interpretation of temperature is left out. In kinetic theory and statistical physics the temperature is considered as average kinetic energy of the chaotic motion of molecules. The conception of thermal motion of molecules does not contradict continuum mechanics. However, it is very difficult to use this mechanical model of temperature for derivation of the equations of continuum mechanics since the chaotic motion of molecules is ignored in continuum mechanics and the temperature is connected with the internal energy. Our purpose is to propose the mechanical interpretation of the temperature which can be foundation for description of thermal processes within the framework of continuum mechanics and by using the methods of continuum mechanics. The main idea is to introduce the Cosserat continuum with internal structure and additional degrees of freedom. We believe that characteristics of rotational motions of internal structure and moment interactions connected with internal structure can be associated with the temperature and other thermodynamical quantities provided that the mathematical description of the proposed model can be reduced to the well-known equations of thermoelasticity.

Keywords: continuum mechanics, shell theory, Cosserat continuum, continuum with microstructure, thermoelasticity

PACS: 46.05.+b, 46.25.Cc, 46.25.Hf, 46.70.-p, 46.70.De, 65.40.Ba, 65.40.De, 65.40.G-, 65.40.Gr, 65.40.gd.

Bibliography - 52 references

2013, 5(1):98-110

  • Prigogine I, Kondepudi D. Sovremennaya termodinamika. Ot teplovykh dvigateley do dissipativnykh structur [Modern Thermodynamics. From heat engines to dissipative structures]. Мoscow, Mir Publ., 2002, 461 p.
  • Prigogine I. Introduction to Thermodynamics of Irreversible Processes. Interscience, New York, 1961.
  • De Groot SR. Termodinamika neobratimyh processov [The thermodynamics of irreversible processes]. Мoscow, GITTL Publ., 1956, 281 p.
  • Gyarmati I. Non-equilibrium thermodynamics. Field theory and variational principles. Springer-Verlag, Berlin-Heidelberg-New York, 1970.
  • Bakhareva IF. Nelineynaya neravnovesnaya termodinamika [Nonlinear non-equilibrium thermodynamics]. Saratov, SGU Publ., 1976, 141 p.
  • Ziegler G. Ekstremalnye printsipy termodinamiki neobratimykh processov i mekhanika sploshnoy sredy [Extreme principles of thermodynamics of irreversible processes and continuum mechanics]. Мoscow, Mir Publ., 1966, 136 p.
  • Zhou D, Casas Baskes H, Lebon J. Rasshirennaya neobratimaya termodinamika [Extended irreversible thermodynamics]. Moscow-Izhevsk, NITs RKhD Publ, 2006, 528 p.
  • Truesdell C. The elements of continuum mechanics. Springer-Verlag. New York. 1965.
  • Truesdell C. A First Course in Rational Continuum Mechanics. N.-Y., Academic Press, 1977.
  • Palmov VA. Kolebaniya uprugoplasticheskikh tel [Vibrations of elastic-plastic bodies]. Moscow, Nauka Publ., 1976, 328 p.
  • Kovalenko AD. Termouprugost [Thermoelasticity]. Kiev, Vischa shkola Publ., 1975, 216 p.
  • Kuvyrkin GN. Termomekhanika deformiruemogo tverdogo tela pri vysokointensivnom nagruzhenii [Thermomechanics of deformable solid at high-intensity loading]. Мoscow, MGTU Publ., 1993, 142 p.
  • Zarubin VS, Kuvyrkin GN. Matematicheskie modeli termomekhaniki [Mathematical models of thermal mechanics]. Мoscow, Fizmatlit Publ., 2002, 168 p.
  • Zhilin PA. Aktualnye problemy mekhaniki. T.1. [Advanced problems in mechanics. Vol. 1.]. St.Petersburg, IPME RAS Publ., 2006, 306 p.
  • Zhilin PA. Aktualnye problemy mekhaniki. T.2. [Advanced problems in mechanics. Vol. 2.]. St.Petersburg, IPME RAS Publ., 2006, 271 p.
  • Zhilin PA. Prikladnaya mekhanika. Osnovy teorii obolochek [Applied Mechanics. Fundamentals of the theory of shells]. St.Petersburg, SPbSTU Publ., 2006. 167 p.
  • Zhilin PA. Prikladnaya mekhanika. Teoriya tonkikh uprugikh sterzhney [Applied Mechanics. The theory of thin elastic rods]. St.Petersburg, SPbSTU Publ., 2007, 101 p.
  • Zhilin PA. Matematicheskaya teoriya neuprugikh sred [Mathematical theory of inelastic media]. Uspekhi Mekhaniki, 2003, 2(4):3-36 (in Russ.).
  • Zhilin PA. Razionalnaya mekhanika sploshnykh sred [Rational continuum mechanics]. St.Petersburg, SPbSTU Publ., 2012, 584 p.
  • Nowacki W. Dynamiczne zagadnienia termospręźystości. Warszawa: PAN, 1966.
  • Sedov LI. Mekhanika sploshnoy sredy. T.1 [Mechanics of Continua. Vol. 1]. Мoscow, Nauka Publ., 1970, 492 p.
  • Kupradze VD. (Ed.) Trekhmernye zadachi matematicheskoy teorii uprugosti i termouprugosti [Three-dimensional problems of the mathematical theory of elasticity and thermo-elasticity]. Moscow, Nauka Publ., 1976, 664 p.
  • Pobedrya BE, Georgievski DV. Osnovy mekhaniki sploshnoy sredy. Kurs liktsy [Fundamentals of continuum mechanics. A course of lectures]. Мoscow, Fizmatlit Publ., 2006, 272 p.
  • Müller I, Müller WH. Fundamentals of thermodynamics and applications: with historical annotations and many citations from Avogadro to Zermelo. Springer, Berlin, 2009, 404 p.
  • Müller I, Ruggeri T. Rational extended thermodynamics. Springer, New York, 1998, 396 p.
  • Germain P, Nguyen QS, Suquet P. Continuum thermodynamics. Trans. ASME. Journal of Applied Mechanics, 1983, 50:1010–1020.
  • Truesdell C. Rational Thermodynamics. Springer-Verlag, New Vork, Berlin, Heidelberg, Tokyo, 1984, 578 p.
  • Müller I, Weiss W. Entropy and Energy: A Universal Competition. Springer, Berlin, 2005, 263 с.
  • Zhilin PA. Mechanics of deformable directed surfaces. Int. J. Solids Structures, 1976, 12:635–648.
  • Yeremeev VA, Zubov LM. Mekhanika uprugikh obolochek [Mechanics of elastic shells]. Мoscow, Nauka Publ., 2008, 280 p.
  • Naghdi PM. The theory of plates and shells. In: Flügge S, Truesdell C (Eds.). Handbuch der Physik. Berlin, Springer, 1972, VIa/2:425–640.
  • Green AE, Naghdi PM. On thermal effects in the theory of shells. Proc. of the Royal Society of London A, 1979, 365:161–190.
  • Pietraszkiewicz W. Refined resultant thermomechanics of shells. Int. J. of Engineering Science, 2011, 49:1112–1124.
  • Eremeyev VA, Pietraszkiewicz W. Thermomechanics of shells undergoing phase transitions. J. of Mech. and Phys. of Solids, 2011, 59(7):1395–1412.
  • Steinmann P, Häsner O. On material interfaces in thermomechanical solids. Archive of Applied Mechanics, 2005, 75(1):31–41.
  • Timirjazev AK (Ed.). Osnovateli kineticheskoy teorii materii [The founders of the kinetic theory of matter (Сoll. of articles)]. Moscow-Leningrad, ONTI Publ., 1987, 220 p.
  • Rosenberger F. Istoriya fiziki. Ch.3. Istoriya fiziki za poslednee (XIX) stoletie [History of Physics. P.3. The history of physics in the last (XIX) century]. Moscow-Leningrad, ONTI Publ., Iss. I, 1935, 302 p.; Iss. II, 1936, 448 p.
  • Whittaker E. A History of the theories of aether and electricity. Dublin: Longman, Green and Co., 1910.
  • Gliozzi M. Storia della fisica. Torino, 1965.
  • Müller I. A history of thermodynamics: the doctrine of energy and entropy. Springer-Verlag. Berlin–Heidelberg, 2007, 324 с.
  • Euler L. Dissertatio de igne, in qua eius natura et proprietates explicantur. 1738.
  • Rasvitie fiziki v Rossii (sbornik statey). Tom 1 [The development of physics in Russia (coll. of articles). Vol. 1]. Moscow, Prosveschenie Publ., 1970.
  • Barabanov NN. Leonard Euler and his contribution to the development of physics: the 300th anniversary of the birth of the scientist. Physics, 2007, 5:40–44 (in Russ.).
  • Lomonosov MV. Polnoe sobranie sochineniy v 10-ti tomakh. Tom 2. Trudy po fizike i khimii. 1747-52 [Complete Works in 10 vols. Vol. 2. Works on physics and chemistry. 1747–1752]. Moscow-Leningrad, AN USSR Publ., 1951.
  • Ivanova EA, Krivtsov AM, Zhilin PA. Description of rotational molecular spectra by means of an approach based on rational mechanics. Z. Angew. Math. Mech., 2007, 87(2):139–149.
  • Ivanova EA. Derivation of theory of thermoviscoelasticity by means of two-component medium. Acta Mechanica, 2010, 61(1):261–286.
  • Ivanova EA. On one model of generalised continuum and its thermodynamical interpretation. In: H. Altenbach, G.A. Maugin, V. Erofeev (Eds.) Mechanics of generalized Continua. Berlin, Springer, 2011, pp. 151-174.
  • Ivanova EA. Derivation of theory of thermoviscoelasticity by means of two-component Cosserat continuum. Technische Mechanik, 2012, 32(2–5):273–286.
  • Cosserat E., Cosserat F. Théorie des Corps Déformables. In: Chwolson's Traité Physique. Paris, Librairie Scientifique A. Hermann et Fils, 1909, 953-1173.
  • Dixon RC, Eringen AC. A dynamical theory of polar elastic dielectrics. Int. J. Engng. Sci., 1965, 3:359–377.
  • Maugin GA. Continuum Mechanics of Electromagnetic Solids. North-Holland-Amsterdam-New York-Oxford-Tokio, 1988.
  • Shashkoff AG, Bubnov VA, Yanovsky SYu. Volnovye yavleniya teploprovodnosti [Wave phenomena of heat conduction]. Moscow, 2004, 296 p.

Full-text electronic version of this article - web site http://elibrary.ru