Vol. 6, №1, 2014


Soldatov Eugene S.,

Lomonosov Moscow State University, Faculty of Physics, http://www.phys.msu.ru
1/2, Leninskie Gory, 119991 Moscow, Russian Federation,
Kolesov Vladimir V.,
Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, http://www.cplire.ru
11/7, Mokhovaya str., 125009 Moscow, Russian Federation

The tendency to miniaturization of electronic components is connected with aspiration to increase of speed of electronic processors, increase in density of a data recording, so memory size of electronic devices, development of more sensitive sensors and receivers. At reduction of the sizes of electronic devices in them qualitatively new effects connected, in particular, with the discrete nature of an electric charge and the quantum and wave nature of electrons start being shown. Studying of quantum effects and development on their basis of new devices is one of priorities of modern solid-state physics. The research in this direction are concentrated, in particular, on molecular electronics (moletronics), quantum informatics, quantum metrology and development of measuring devices and sensors of new type. In work results in the field of development and research of molecular single-electron devices received by research team of the Moscow State University, IRE Russian Academy of Sciences and IGIC Russian Academy of Sciences are presented.

Keywords: nanoelectronics, moletronics, single-electronics, single-electron transistor, Coulomb blockade.

УДК 621.382; 535.312

Bibliography – 74 references
Received 10.12.2012

RENSIT, 2012, 4(2)71-90
  • Anthony S. Beyond 22nm: Applied Materials, the unsung hero of Silicon Valley, http://www.extremetech.com/extreme/106899-beyond-22nm-applied-materials-the-unsung-silicon-hero, December 1, 2011.
  • Clarke P. Global foundries’ Dresden fab to run 22-nm CMOS, http://www.eetimes.com/news/semi/showArticle.jhtml?articleID=223500059, March 11, 2010.
  • Lemmers D. Sematech crafts ZIL solution for 16 nm, http://www.semiconductor.net/article/307037-Sematech_Crafts_ZIL_Solution_for_16_nm.php, June 29, 2009.
  • The International Technology Roadmap for Semiconductors, http://public.itrs.net/. Edition 2011.
  • Markoff J. Technology; Intel’s big shift after hitting technical wall, http://www.nytimes.com/2004/05/17/business/technology-intel-s-big-shift-after-hitting-technical-wall.html, May 17, 2004.
  • Averin DV and Likharev KK. Single-electronics: Correlated transfer of single electrons and Cooper pairs in small tunnel junctions. In: Mesoscopic Phenomena in Solids, B. Altshuler, P. Lee, and R. Webb, Eds. Amsterdam, The Netherlands: Elsevier, 1991, pp. 173-271.
  • Likharev KK. Single-electron devices and their applications. Proc. IEEE, 1999, 87:606.
  • Likharev K and Strukov D. CMOL: Devices, circuits, and architectures. In: G. Cuniberti et al. (eds.), Introducing Molecular Electronics. Berlin, Springer, 2005.
  • Gorter CJ. Physica, 1951, 17:777.
  • Neugebauer CA and Webb MB. Electrical conduction mechanism in ultrathin, evaporated metal films. J. Appl. Phys., 1962, 33:74-82.
  • Zeller HR and Giaever I. Tunneling, zero-bias anomalies and small superconductors. Phys. Rev., 1969, 181:789-799.
  • Lambe J and Jaklevic RC. Charge-quantization studies using tunnel capacitor. Phys. Rev. Lett., 1969, 22:1371-1375.
  • Kulik IO and Shekhter RI. Kinetic phenomena and charge discreteness effects in granular media. Zh. Eksp. Teor. Fiz., 1974, 62,:623-640 [Sov. Phys.-JETP, 41:308-316].
  • Kuz’min LS, Likharev KK. Neposredstvennoe eksperimental’noe nabludenie diskretnogo korrelirovannogo odnoelektronnogo tunnelirovaniya [Direct experimental observation of discrete correlated single-electron tunneling], ZhETF, 1987, 45(8):289 (in Russ.).
  • Fulton TA and Dolan GD. Observation of single-electron charging effects in small tunnel junctions. Phys. Rev. Lett., 1987, 59:109-112.
  • Korotkov AN, Averin DV, Likharev KK and Vasenko SA. Single-electron transistors as ultrasensitive electrometers. In: Single Electron Tunneling and Mesoscopic Devices. Koch H and Lubbig H, Eds. Berlin, Springer, 1992, pp. 45-60.
  • Korotkov AN. Intrinsic noise of the single-electron transistor. Phys. Rev. B, 1994, 49:10381-10392.
  • Dolan GD. Offset works for lift-off photoprocessing. Appl. Phys. Lett., 1977, 31:337-339.
  • Devoret MH, Esteve D, Urbina С. Single-electron transfer in metallic nanostructures. Nature, 1992, 360:547-553.
  • Krupenin VA, Lotkhov SV, Presnov DE. Instability of single-electron memory at low temperatures in Al/AlOx/Al structures. JETP, 1997, 84(1):190.
  • Dresselhaus P, Li J, Han S, Ji L, Lukens JE and Likharev KK. Measurement of single electron lifetimes in a multijunction trap. Phys. Rev. Lett., 1994, 72:3226-3229.
  • Pashkin YuA, Nakamura Y, Tsai JS. Metallic resistively coupled single-electron transistor. Appl. Phys. Lett., 1999, 74:132-134.
  • Geerligs LJ, Anderegg VG, Holweg PAM, Mooij JE, Pothier H, Esteve D, Urbina C and Devoret MH. Frequency locked turnstile device for single electrons. Phys. Rev. Lett., 1990, 64:2691-2694.
  • Pashkin YuA, Yamamoto Т, Astafiev O, Nakamura Y, Averin DV, Tsai JS. Quantum oscillations in two coupled charge qubits. Nature, 2003, 421:823-826.
  • Gubin SP, Gulayev YuV, Khomutov GB, Kislov VV, Kolesov VV, Soldatov ES, Sulaimankulov KS, Trifonov AS. Molecular clusters as building blocks for nanoelectronics: the first demonstration of cluster SET transistor at room temperature. Nanotechnology, 2002, 13:185-194.
  • Feynman RY. There is a plenty room at the bottom. Lection in Am.Phys.Soc, Caltech, 1959.
  • Aviram A, Ratner MA. Molecular Rectifiers. Chem. Phys. Lett., 1974, 29:277.
  • Zubilov AA, Gubin SP, Korotkov AN, Khanin VV, Nikolaev AG, Soldatov ES, Khomutov GB, Yakovenko SA. Odnoelektronnoe tunnelirovanie cherez klasternuyu molekulu pri komnatnoy temperature [Single-electron tunneling through a cluster molecule at room temperature]. Pis’ma v ZhTF, 1994, 20(5):41-45 (in Russ.).
  • Iakovenko SA, Soldatov ES, Khanin VV, Trifonov AS, Gubin SP, Khomutov GB. Fabrication and properties of carboran clusters containing stearic acid LB films and possible applications for single electronics. Thin Solid Films, 1996, 284-285:873-875.
  • Gubin SP, Soldatov ES, Trifonov AS, Khanin VV. Nanorazmernye klasternye materialy. I Odinochnye klastery na poverkhnosti grafita [Nanoscale cluster materials. I. Single clusters on the graphite surface]. Neorganich. materialy, 1996, 32(10):1265-1271 (in Russ.).
  • Yakovenko SA, Gubin SP, Soldatov ES, Trifonov AS, Khanin VV, Khomutov GB. Nanorazmernye klasternye materialy. II. Lengmurovskie plenki stearinivoy kisloty s klasterami [Nanoscale cluster materials. II Langmuir films of stearic acid with clusters]. Neorganich. materialy, 1996, 32(10):1272-1277 (in Russ.).
  • Gubin SP. Khimiya klasterov [Cluster chemistry]. Moscow, Nauka Publ., 1987.
  • Eremenko NK, Mednikov EG, Kurasov SS. Karbonilfosfinovye soedineniya palladiya i platiny [Karbonilphosphin compounds of palladium and platinum]. Uspekhi khimii, 1985, 54(4):671-693 (in Russ.).
  • Gaines GL. Insoluble monolayers at liquid - gas interface. New-York, John Willey, 1966.
  • Gubin SP, Gulyaev YuV, Kislov VV, Kolesov VV, Soldatov ES, Trifonov AS, Yudin SG. Tunnel’nye nanostruktury na osnove organometallicheskikh klasternykh molekul [Tunnel nanostructures on the basis of organometallic cluster molecules]. Radiotekhnika i elektronika, 1997, 42(11):1396-1402 (in Russ.).
  • Gubin SP, Khomutov GB, Kolesov VV, Soldatov ES, Sulaimankulov KS, Trifonov AS, Johansson P, Shorokhov VV. Correlated electron tunneling in the single-molecule nanosystems. Phys. Low-Dim. Struct., 2002, 1/2:113.
  • Gubin SP, Gulayev YuV, Khomutov GB, Kislov VV, Kolesov VV, Soldatov ES, Sulaimankulov KS, Trifonov AS. Molecular clusters as building blocks for nanoelectronics: the first demonstration of cluster SET transistor at room temperature. Nanotechnology, 2002, 13:185-194.
  • Zubilov AA, Soldatov ES, Mevkh NG, Khanin VV. Odnoelektronnoe tunnelirovanie v dvukhperekhodnoy tunnel’noy sisteme na osnove odinichnoy molekuly ferritina [Single-electron tunneling in two-transient tunnel system on the basis of a single molecule of ferritin.]. Radiotekhnika i elektronika, 2000, 45(11):1373-76 (in Russ.).
  • Khomutov GB, Belovolova LV, Soldatov ES, Khanin VV, Trifonov AS. STM investigation of electron transport features in cytochrome c Langmuir-Blodgett films. Colloids and Surfaces A, 2002, 198-200:745.
  • Khomutov GB, Belovolova LV, Gubin SP, Khanin VV, Obydenov AYu, Sergeev-Cherenkov AN, Soldatov ES, TrifonovAS. STM study of morphology and electron transport features in cytochrome c and nanocluster molecule monolayers. Bioelectrochemistry, 2002, 55:177-181.
  • Edelman VS. Pribory i tekhnika eksperimenta, 1997, 5:25.
  • Soldatov ES, Gubin SP, Kolesov VV, Khomutov GB, Maximov IA, Sergeev-Cherenkov AN, Suyatin DB, Shorokhov VV, Sulaimankulov KS. Molecular cluster based nanoelectronics. Microelectronic Engineering, 2003, 69:536.
  • Morpurgo AF, Marcus CM and Robinson DB. Appl. Phys. Lett., 1999, 74:2084.
  • Kervennic YV, van der Zant HSJ, Morpurgo AF, Gurevich L and Kouwenhoven LP. Appl. Phys. Lett., 2002, 80:321.
  • Bezryadin A, Dekker C, Schmid G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett., 1997, 71(9):1273.
  • Steinmann P and Weaver JMR. Vac. Sci. and Technol. B, 2004, 22:3178.
  • Park H, Lim AKL, Alivisatos AP. Fabrication of metallic electrodes with nanometer separation with electromigration. App. Phys. Letters, 1999, 35(2):301.
  • Ho PS and Kwok T. Rep. Prog. Phys., 1989, 52:301.
  • Stepanov AS, Soldatov ES, Snigirev OV. Formation of molecular transistor electrodes by electromigration.Proc. SPIE, 2010, 7521:752112-1-752112-9.
  • Gubin SP, Kolesov VV, Soldatov ES, Trifonov AS, Kataeva NA, Shorokhov VV. Nanofaznye materialy v elektronike - veschestva, tekhnologiya, ustroystva [Nanophase materials in electronics - substances, technology, device]. Nelineyny mir, 2005, 3(1-2):10-26 (in Russ.).
  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG and Whitesides GM. Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology. Chem. Rev., 2005, 105:1103–1169.
  • Stepanov AS, Soldatov ES, Snigirev OV. Implementation of molecular transistor electrodes by electromigration. J.Supercond. and Nov.Magn., 2011, 24:1087-1093.
  • Na J, Ayres J, Chandra KL et al. Nanotechnology, 2007, 18:035203.
  • Compton OC and Osterloh FE. J.Am.Chem.Soc., 2007, 129(25):7793-7798.
  • Li H, Jin L, Kariuki NN et al. Chem. Matter., 2003, 15(1):29-37.
  • Zin MT, Yip H-L, Wong N-Y, Ma H, Jen AK-Y. Langmuir, 2006, 22:6346-6351.
  • Kuturov AN, Soldatov ES, Polyakova LA, Varlashkin AV, Gubin SP. Nanochastitsy Au na atomarno-gladkoy poverkhnosti plenok zolota [Au nanoparticles on an atomically smooth surface of gold films]. Neorganich. materialy, 2011, 47(9):1047-1051 (in Russ.).
  • Gubin SP, Yurkov GYu Kataeva NA. Nanochastitsy blagorodnykh metallov i materialy na ikh osnove [Nanoparticles of noble metals and materials on their basis]. Moscow, Azbuka-2000 Publ., 2006, 154 p.
  • Soldatov ES, Khanin VV, Trifonov AS, Gubin SP, Kolesov VV, Presnov DE, Khomutov GB,Yakovenko SA. Odnoelektronny transistor na osnove odinochnoy klasernoy molekuly pri komnatnoy temperature [A single-electron transistor based on a single cluster molecule at room temperature]. Pis’ma v ZhETF, 1996, 64(7):510-514 (in Russ.).
  • Soldatov ES, Khanin VV, Trifonov AS, Gubin SP, Kolesov VV, Presnov DE, Khomutov GB,Yakovenko SA, Korotkov AN. Molekulyarny odnoelektronny transistor, rabotayuschiy pri komnatnoy temperature [Molecular single-electron transistor operating at room temperature]. YFN, 168(2):217 (in Russ.).
  • Gubin SP, Khomutov GB, Trifonov AS, Krupenin VA, Kolesov VV, Soldatov ES, Shorokhov VV, Snigirev OV, Presnov DE, Baranov D. Sovremennye tendentsii v razvitii elementov vychislitel’nykh ustroystv post-CMOS ery[Modern trends in the development of the elements of computing devices post-CMOS era]. Nanotekhnologii: razrabotka, primenenie, 2009, 1(1):43-55 (in Russ.).
  • Sapkov IV, Kolesov VV, Soldatov ES. Ispol’zovanie sfokusirovannogo ionnogo puchka pri sozdanii molekulyarnogo odnoelektronnogo transistora [Using a focused ion beam to create a molecular single-electron transistor]. Vestnik MSU, ser. 3. Fizika, astronomiya, 2009, 4:26-29 (in Russ.).
  • Strachan DR, Smith DE, Johnston DE, Hark H-T, Therien MJ, Bonnel DA and Jonson AT. Controlled fabrication of nanogaps in ambient tnviroment for molecular electronics. Appl. Phys. Lett., 2005, 86(4):043109.
  • Osorio E, O’Neill K, Wegewijs M, Stuhr-Hansen N, Paaske J, Bjornholm T and van der Zant HSJ. Electronic excitations of a single molecule contacted in a three-terminal configuration. Nano Lett., 2007, 7:3336.
  • Osorio EA, Bjornholm T, Lehn JM, Ruben N, van der Zant HSJ. Single-molecule transport in three-terminal devices. J. Phys.: Condens. Matter, 2008, 20:374121-374135.
  • Zyazin AS et al. Electric Field Controlled Magnetic Anisotropy in a Single Molecule. Nano Lett., 2010, 10(9):3307–3311.
  • Stepanov AS, Soldatov ES, Lysikov AS, Snigirav OV. Prototip planarnogo odnoelektronnogo transistora s komnatnoy rabochey temperaturoy [A prototype of a planar single-electron transistor with a working temperature of room]. Radiotekhnika i elektronika, in print (in Russ.).
  • Türel Ö and Likharev K. CrossNets: possible neuromorphic networks based on nanoscale components. Int.J.Circ.Theor.Appl., 2003, 31:37-53.
  • Likharev KK, Mayr A, Muckra I and Türel Ö. CrossNets: Highperformance neuromorphic architectures for CMOL circuits. Ann. NY Acad. Sci., 2003, 1006:146-156.
  • Fuechsle M, Miwa JA, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg LCL, Klimeck G, Simmons MY. A single-atom transistor. Nature Nanotechnology, 2012, doi:10.1038/nnano.2012.21.
  • Tsai JS, Nakamura Y, Pashkin YuA. Qubit utilizing charge-number state in a superconducting nanostructure. Quantum Information and Computation, 2001, V1:124-128.
  • Pashkin YuA, Li TF, Pekola JP, Astafiev O, Knyazev DA, Hoehne F, Im H, Nakamura Y, Tsai JS. Detection of mechanical resonance of a single-electron transistor by direct current. Appl. Phys. Lett., 2010, 96:26.
  • Novoselov KS et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306. DOI:10.1126/science.1102896.
  • Zhou SY, Gweon G-H, Fedorov AV, First PN, de Heer WA, Lee D-H, Guinea F, Castro Neto AH, Lanzara A. Substrate-induced band gap opening in epitaxial graphene. Nature Materials, 2007, 6:770-775.

Full-text electronic version of this article - web site http://elibrary.ru